Suppr超能文献

Pdr1调控光滑念珠菌的多药耐药性:基因敲除和全基因组表达研究。

Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.

作者信息

Vermitsky John-Paul, Earhart Kelly D, Smith W Lamar, Homayouni Ramin, Edlind Thomas D, Rogers P David

机构信息

Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.

出版信息

Mol Microbiol. 2006 Aug;61(3):704-22. doi: 10.1111/j.1365-2958.2006.05235.x. Epub 2006 Jun 27.

Abstract

Candida glabrata emerged in the last decade as a common cause of mucosal and invasive fungal infection, in large part due to its intrinsic or acquired resistance to azole antifungals such as fluconazole. In C. glabrata clinical isolates, the predominant mechanism behind azole resistance is upregulated expression of multidrug transporter genes CDR1 and PDH1. We previously reported that azole-resistant mutants (MIC >or= 64 microg ml(-1)) of strain 66032 (MIC = 16 microg ml(-1)) similarly show coordinate CDR1-PDH1 upregulation, and in one of these (F15) a putative gain-of-function mutation was identified in the single homologue of Saccharomyces cerevisiae transcription factors Pdr1-Pdr3. Here we show that disruption of C. glabrata PDR1 conferred equivalent fluconazole hypersensitivity (MIC = 2 microg ml(-1)) to both F15 and 66032 and eliminated both constitutive and fluconazole-induced CDR1-PDH1 expression. Reintroduction of wild-type or F15 PDR1 fully reversed these effects; together these results demonstrate a role for this gene in both acquired and intrinsic azole resistance. CDR1 disruption had a partial effect, reducing fluconazole trailing in both strains while restoring wild-type susceptibility (MIC = 16 microg ml(-1)) to F15. In an azole-resistant clinical isolate, PDR1 disruption reduced azole MICs eight- to 64-fold with no effect on sensitivity to other antifungals. To extend this analysis, C. glabrata microarrays were generated and used to analyse genome-wide expression in F15 relative to its parent. Homologues of 10 S. cerevisiae genes previously shown to be Pdr1-Pdr3 targets were upregulated (YOR1, RTA1, RSB1, RPN4, YLR346c and YMR102c along with CDR1, PDH1 and PDR1 itself) or downregulated (PDR12); roles for these genes include small molecule transport and transcriptional regulation. However, expression of 99 additional genes was specifically altered in C. glabrata F15; their roles include transport (e.g. QDR2, YBT1), lipid metabolism (ATF2, ARE1), cell stress (HSP12, CTA1), DNA repair (YIM1, MEC3) and cell wall function (MKC7, MNT3). These azole resistance-associated changes could affect C. glabrata tissue-specific virulence; in support of this, we detected differences in F15 oxidant, alcohol and weak acid sensitivities. C. glabrata provides a promising model for studying the genetic basis of multidrug resistance and its impact on virulence.

摘要

光滑念珠菌在过去十年中成为黏膜和侵袭性真菌感染的常见病因,很大程度上是由于其对氟康唑等唑类抗真菌药物具有固有或获得性耐药性。在光滑念珠菌临床分离株中,唑类耐药背后的主要机制是多药转运蛋白基因CDR1和PDH1的表达上调。我们之前报道,菌株66032(MIC = 16 μg ml⁻¹)的唑类耐药突变体(MIC≥64 μg ml⁻¹)同样显示出CDR1 - PDH1的协同上调,并且在其中一个突变体(F15)中,在酿酒酵母转录因子Pdr1 - Pdr3的单个同源物中鉴定出一个推定的功能获得性突变。在此我们表明,光滑念珠菌PDR1的破坏使F15和66032对氟康唑均表现出同等程度的超敏反应(MIC = 2 μg ml⁻¹),并消除了组成型和氟康唑诱导的CDR1 - PDH1表达。野生型或F15 PDR1的重新引入完全逆转了这些效应;这些结果共同证明了该基因在获得性和固有唑类耐药中均发挥作用。CDR1的破坏具有部分作用,减少了两株菌中的氟康唑拖尾现象,同时使F15恢复到野生型敏感性(MIC = 16 μg ml⁻¹)。在一株唑类耐药临床分离株中,PDR1的破坏使唑类MIC降低了8至64倍,而对其他抗真菌药物的敏感性没有影响。为了扩展这一分析,构建了光滑念珠菌微阵列并用于分析F15相对于其亲本的全基因组表达。酿酒酵母中先前显示为Pdr1 - Pdr3靶标的10个基因的同源物表达上调(YOR1、RTA1、RSB1、RPN4、YLR346c和YMR102c以及CDR1、PDH1和PDR1自身)或下调(PDR12);这些基因的作用包括小分子转运和转录调控。然而,另外99个基因的表达在光滑念珠菌F15中发生了特异性改变;它们的作用包括转运(如QDR2、YBT1)、脂质代谢(ATF2、ARE1)、细胞应激(HSP12、CTA1)、DNA修复(YIM1、MEC3)和细胞壁功能(MKC7、MNT3)。这些与唑类耐药相关的变化可能影响光滑念珠菌的组织特异性毒力;支持这一点的是,我们检测到F15在氧化剂、酒精和弱酸敏感性方面存在差异。光滑念珠菌为研究多药耐药的遗传基础及其对毒力的影响提供了一个有前景的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验