Suppr超能文献

用于抗癌药物临床开发的组合循环生物标志物模型的开发。

The development of composite circulating biomarker models for use in anticancer drug clinical development.

机构信息

Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester, UK.

出版信息

Int J Cancer. 2011 Apr 15;128(8):1843-51. doi: 10.1002/ijc.25513.

Abstract

The development of informative composite circulating biomarkers predicting cancer presence or therapy response is clinically attractive but optimal approaches to modeling are as yet unclear. This study investigated multidimensional relationships within an example panel of serum insulin-like growth factor (IGF) peptides using logistic regression (LR), fractional polynomial (FP), regression, artificial neural networks (ANNs) and support vector machines (SVMs) to derive predictive models for colorectal cancer (CRC). Two phase 2 biomarker validation analyses were performed: controls were ambulant adults (n = 722); cases were: (i) CRC patients (n = 100) and (ii) patients with acromegaly (n = 52), the latter as "positive" discriminators. Serum IGF-I, IGF-II, IGF binding protein (IGFBP)-2 and -3 were measured. Discriminatory characteristics were compared within and between models. For the LR, FP and ANN models, and to a lesser extent SVMs, the addition of covariates at several steps improved discrimination characteristics. The optimum biomarker combination discriminating CRC vs. controls was achieved using ANN models [sensitivity, 94%; specificity, 90%; accuracy, 0.975 (95% CIs: 0.948 1.000)]. ANN modeling significantly outperformed LR, FP and SVM in terms of discrimination (p < 0.0001) and calibration. The acromegaly analysis demonstrated expected high performance characteristics in the ANN model [accuracy, 0.993 (95% CIs: 0.977, 1.000)]. Curved decision surfaces generated from the ANNs revealed the potential clinical utility. This example demonstrated improved discriminatory characteristics within the composite biomarker ANN model and a final model that outperformed the three other models. This modeling approach forms the basis to evaluate composite biomarkers as pharmacological and predictive biomarkers in future clinical trials.

摘要

开发能够预测癌症存在或治疗反应的信息复合循环生物标志物具有临床吸引力,但最佳建模方法尚不清楚。本研究使用逻辑回归 (LR)、分数多项式 (FP)、回归、人工神经网络 (ANN) 和支持向量机 (SVM) 研究了血清胰岛素样生长因子 (IGF) 肽的示例组合中的多维关系,以建立结直肠癌 (CRC) 的预测模型。进行了两项 2 期生物标志物验证分析:对照组为活动成年人 (n = 722);病例组为:(i) CRC 患者 (n = 100) 和 (ii) 肢端肥大症患者 (n = 52),后者作为“阳性”鉴别器。测量血清 IGF-I、IGF-II、IGF 结合蛋白 (IGFBP)-2 和 -3。在模型内和模型之间比较鉴别特征。对于 LR、FP 和 ANN 模型,并且在较小程度上对于 SVM,在几个步骤中添加协变量可改善鉴别特征。使用 ANN 模型实现了区分 CRC 与对照组的最佳生物标志物组合 [灵敏度,94%;特异性,90%;准确性,0.975(95%置信区间:0.948-1.000)]。在鉴别方面,ANN 模型明显优于 LR、FP 和 SVM(p<0.0001)和校准。肢端肥大症分析显示 ANN 模型具有预期的高性能特征 [准确性,0.993(95%置信区间:0.977,1.000)]。来自 ANN 的曲线决策面揭示了潜在的临床实用性。该示例证明了复合生物标志物 ANN 模型内的鉴别特征得到了改善,并且最终模型优于其他三个模型。这种建模方法为未来临床试验中评估复合生物标志物作为药理和预测生物标志物奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验