Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland.
Phys Chem Chem Phys. 2010 Sep 7;12(33):9742-50. doi: 10.1039/c002562c. Epub 2010 Jun 15.
The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as Ti in the alloy reacts with oxygen. In this paper, we study the details of the oxide-alloy interface. The atomic model is the (110) NiTi surface interfaced with the (100) rutile TiO(2) surface; this combination provides the best lattice match of alloy and oxide. When the interface forms, static minimisations and molecular dynamics show that there is no migration of atoms between the alloy and the oxide. In the alloy there are some notable structural relaxations. We find that a columnar structure appears in which alternating long and short Ni-Ti bonds are present in each surface and subsurface plane into the fourth subsurface layer. The oxide undergoes some structural changes as a result of terminal oxygen coordinating to Ti in the NiTi surface. The electronic structure shows that Ti(3+) species are present at the interface, with Ti(4+) in the bulk of the oxide layer and that the metallic character of the alloy is unaffected by the interaction with oxygen, all of which is consistent with experiment. A thermodynamic analysis is used to examine the stability of different possible structures-a perfect interface and one with Ti and O vacancies. We find that under conditions typical of oxidation and shape memory treatments, the most stable interface structure is that with Ti vacancies in the alloy surface, leaving an Ni-rich layer, consistent with the experimental findings for this interface.
镍钛形状记忆合金(SMA)的生物相容性使得其在侵入性和微创生物医学设备中的应用成为可能。镍钛金属间化合物合金自发形成一层薄的 TiO(2) 钝化层,赋予其生物相容性。氧化物层的形成被认为是合金中的钛与氧反应的结果。在本文中,我们研究了氧化物-合金界面的细节。原子模型是(110)镍钛表面与(100)金红石 TiO(2) 表面的界面;这种组合提供了合金和氧化物的最佳晶格匹配。当界面形成时,静态最小化和分子动力学表明合金和氧化物之间没有原子迁移。在合金中存在一些显著的结构弛豫。我们发现,出现了柱状结构,其中每个表面和次表面平面中交替存在长和短的 Ni-Ti 键,直到第四亚表面层。由于末端氧与镍钛表面中的 Ti 配位,氧化物发生了一些结构变化。电子结构表明,界面处存在 Ti(3+) 物种,在氧化物层的体相中存在 Ti(4+),并且合金的金属性质不受与氧相互作用的影响,所有这些都与实验一致。热力学分析用于研究不同可能结构的稳定性——理想界面和存在 Ti 和 O 空位的界面。我们发现,在典型的氧化和形状记忆处理条件下,最稳定的界面结构是合金表面存在 Ti 空位的结构,留下富 Ni 层,与该界面的实验结果一致。