Chu C L, Hu T, Wu S L, Dong Y S, Yin L H, Pu Y P, Lin P H, Chung C Y, Yeung K W K, Chu Paul K
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
Acta Biomater. 2007 Sep;3(5):795-806. doi: 10.1016/j.actbio.2007.03.002. Epub 2007 Apr 26.
Fenton's oxidation is traditionally used to remove inorganic and organic pollutants from water in waster water treatment. It is an advanced oxidation process in which H2O2 is catalytically decomposed by ferrous irons into hydroxyl radicals (*OH) which have a higher oxidation potential (2.8V) than H2O2. In the work reported here, we for the first time use Fenton's oxidation to modify the surface of biomedical NiTi shape memory alloy (SMA). The influences of Fenton's oxidation on the surface microstructure, blood compatibility, leaching of harmful Ni ions and corrosion resistance in simulated body fluids is assessed using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma mass spectrometry, electrochemical tests, hemolysis analysis and the blood platelet adhesion test. The mechanical stability of the surface titania film produced by Fenton's oxidation as well as their effects on the shape memory behavior of the SMA are studied by bending tests. Our results show that Fenton's oxidation produces a novel nanostructured titania gel film with a graded structure on the NiTi substrate without an intermediate Ni-rich layer that is typical of high-temperature oxidation. Moreover, there is a clear Ni-free zone near the top surface of the titania film. The surface structural changes introduced by Fenton's oxidation improve the electrochemical corrosion resistance and mitigate Ni release. The latter effects are comparable to those observed after oxygen plasma immersion ion implantation reported previously and better than those of high-temperature oxidation. Aging in boiling water improves the crystallinity of the titania film and further reduces Ni leaching. Blood platelet adhesion is remarkably reduced after Fenton's oxidation, suggesting that the treated SMA has improved thrombo resistance. Enhancement of blood compatibility is believed to stem from the improved hemolysis resistance, the surface wettability and the intrinsic electrical characteristics of the titania film. The titania film produced by Fenton's oxidation has good mechanical stability and does not adversely impact the shape memory behavior of NiTi. Our work suggests that Fenton's oxidation is a promising low-temperature, low-cost surface modification method for improving the surface properties of biomedical NiTi SMA.
芬顿氧化法传统上用于废水处理中去除水中的无机和有机污染物。它是一种高级氧化过程,其中过氧化氢被亚铁离子催化分解为具有比过氧化氢更高氧化电位(2.8V)的羟基自由基(*OH)。在本文报道的工作中,我们首次使用芬顿氧化法对生物医学镍钛形状记忆合金(SMA)的表面进行改性。使用扫描电子显微镜、X射线衍射、X射线光电子能谱、电感耦合等离子体质谱、电化学测试、溶血分析和血小板黏附测试来评估芬顿氧化对表面微观结构、血液相容性、有害镍离子的浸出以及在模拟体液中的耐腐蚀性的影响。通过弯曲试验研究了芬顿氧化产生的表面二氧化钛膜的机械稳定性及其对SMA形状记忆行为的影响。我们的结果表明,芬顿氧化在镍钛基底上产生了一种具有梯度结构的新型纳米结构二氧化钛凝胶膜,没有高温氧化典型的中间富镍层。此外,在二氧化钛膜的顶面附近有一个明显的无镍区。芬顿氧化引入的表面结构变化提高了电化学耐腐蚀性并减少了镍的释放。后一种效果与先前报道的氧等离子体浸没离子注入后观察到的效果相当,并且优于高温氧化的效果。在沸水中老化可提高二氧化钛膜的结晶度并进一步减少镍的浸出。芬顿氧化后血小板黏附显著降低,表明处理后的SMA具有改善的抗血栓性。血液相容性的提高被认为源于溶血抗性的改善、表面润湿性以及二氧化钛膜的固有电学特性。芬顿氧化产生的二氧化钛膜具有良好的机械稳定性,并且不会对镍钛的形状记忆行为产生不利影响。我们的工作表明,芬顿氧化是一种有前途的低温、低成本表面改性方法,可用于改善生物医学镍钛SMA的表面性能。