Suppr超能文献

SWI/SNF 复合物、染色质重塑和骨骼成肌:是时候进行交流了!

SWI/SNF complexes, chromatin remodeling and skeletal myogenesis: it's time to exchange!

机构信息

Sanford/Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037-1062, USA.

出版信息

Exp Cell Res. 2010 Nov 1;316(18):3073-80. doi: 10.1016/j.yexcr.2010.05.023. Epub 2010 May 27.

Abstract

Skeletal muscle differentiation relies on the coordinated activation and repression of specific subsets of genes. This reflects extensive changes in chromatin architecture, composition of chromatin-associated complexes and histone modifications at the promoter/enhancer elements of skeletal muscle genes. An early, key event in the activation of muscle-specific gene transcription is the disruption of the repressive conformation imposed by nucleosomes, which impede the access of pioneer transcription factors, such as the muscle-specific basic helix-loop-helix (bHLH) factors MyoD and Myf5, to their DNA-binding sites. This review focuses on our current understanding of the role of the SWI/SNF ATP-dependent chromatin-remodeling complex in the activation of the myogenic program, by inducing conformational changes permissive for muscle-gene expression. Recent findings suggest that specific combinations of individual SWI/SNF components can generate sub-complexes with specialized functions that are engaged at sequential stages of muscle-gene activation--e.g., initial displacement of the nucleosome followed by the loading of the complete myogenic transcriptosome that promotes gene transcription. SWI/SNF composition and function is regulated by the exchange of specific variants of structural sub-units. In turn, an exchange of histone variants and related epigenetic modifications might reflect the impact of distinct SWI/SNF complexes on the architecture and activity of target promoter/enhancer elements. Thus, the SWI/SNF complexes should be regarded not just as simple executors of the program imposed by transcription factors, but as multifaceted "readers" and "shapers" of the chromatin/DNA landscape within target muscle genes along the transition from myoblasts to myotubes.

摘要

骨骼肌分化依赖于特定基因亚群的协调激活和抑制。这反映了染色质结构、染色质相关复合物组成和启动子/增强子元件处组蛋白修饰的广泛变化。肌肉特异性基因转录激活的早期关键事件是破坏核小体施加的抑制构象,核小体阻碍了先驱转录因子(如肌肉特异性碱性螺旋-环-螺旋 (bHLH) 因子 MyoD 和 Myf5)与其 DNA 结合位点的接触。这篇综述重点介绍了我们目前对 SWI/SNF ATP 依赖性染色质重塑复合物在肌生成程序激活中的作用的理解,通过诱导有利于肌肉基因表达的构象变化来实现。最近的发现表明,特定的 SWI/SNF 组件组合可以产生具有专门功能的亚复合物,这些亚复合物在肌肉基因激活的连续阶段被募集——例如,核小体的初始位移,随后是完整的肌生成转录体的加载,从而促进基因转录。SWI/SNF 的组成和功能受特定结构亚基变体的交换调控。反过来,组蛋白变体和相关表观遗传修饰的交换可能反映了不同的 SWI/SNF 复合物对靶启动子/增强子元件的结构和活性的影响。因此,SWI/SNF 复合物不应仅仅被视为转录因子所施加程序的简单执行者,而应被视为沿着成肌细胞向肌管过渡过程中靶肌肉基因内染色质/DNA 景观的多面“读取器”和“塑造者”。

相似文献

1
SWI/SNF complexes, chromatin remodeling and skeletal myogenesis: it's time to exchange!
Exp Cell Res. 2010 Nov 1;316(18):3073-80. doi: 10.1016/j.yexcr.2010.05.023. Epub 2010 May 27.
3
Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex.
EMBO J. 2012 Jan 18;31(2):301-16. doi: 10.1038/emboj.2011.391. Epub 2011 Nov 8.
4
SWI/SNF: the crossroads where extracellular signaling pathways meet chromatin.
J Cell Physiol. 2006 May;207(2):309-14. doi: 10.1002/jcp.20514.
5
SWI/SNF-directed stem cell lineage specification: dynamic composition regulates specific stages of skeletal myogenesis.
Cell Mol Life Sci. 2016 Oct;73(20):3887-96. doi: 10.1007/s00018-016-2273-3. Epub 2016 May 20.
6
Chromatin remodeling by SWI/SNF results in nucleosome mobilization to preferential positions in the rat osteocalcin gene promoter.
J Biol Chem. 2007 Mar 30;282(13):9445-9457. doi: 10.1074/jbc.M609847200. Epub 2007 Feb 1.
8
Myogenin and the SWI/SNF ATPase Brg1 maintain myogenic gene expression at different stages of skeletal myogenesis.
J Biol Chem. 2007 Mar 2;282(9):6564-70. doi: 10.1074/jbc.M608898200. Epub 2006 Dec 27.
10
Functional selectivity of recombinant mammalian SWI/SNF subunits.
Genes Dev. 2000 Oct 1;14(19):2441-51. doi: 10.1101/gad.828000.

引用本文的文献

1
Transcription Factor Regulates Skeletal Muscle Cell Proliferation and Migration via in Pigs.
Genes (Basel). 2024 Jan 2;15(1):65. doi: 10.3390/genes15010065.
2
SMARCA4 biology in alveolar rhabdomyosarcoma.
Oncogene. 2022 Mar;41(11):1647-1656. doi: 10.1038/s41388-022-02205-0. Epub 2022 Jan 29.
5
Prmt7 promotes myoblast differentiation via methylation of p38MAPK on arginine residue 70.
Cell Death Differ. 2020 Feb;27(2):573-586. doi: 10.1038/s41418-019-0373-y. Epub 2019 Jun 26.
7
Recovery from impaired muscle growth arises from prolonged postnatal accretion of myonuclei in Atrx mutant mice.
PLoS One. 2017 Nov 2;12(11):e0186989. doi: 10.1371/journal.pone.0186989. eCollection 2017.
9
SWI/SNF-directed stem cell lineage specification: dynamic composition regulates specific stages of skeletal myogenesis.
Cell Mol Life Sci. 2016 Oct;73(20):3887-96. doi: 10.1007/s00018-016-2273-3. Epub 2016 May 20.
10
Therapeutic advances for the tumors associated with neurofibromatosis type 1, type 2, and schwannomatosis.
Neuro Oncol. 2016 May;18(5):624-38. doi: 10.1093/neuonc/nov200. Epub 2016 Feb 6.

本文引用的文献

1
Myogenic microRNA expression requires ATP-dependent chromatin remodeling enzyme function.
Mol Cell Biol. 2010 Jul;30(13):3176-86. doi: 10.1128/MCB.00214-10. Epub 2010 Apr 26.
2
Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming.
Dev Cell. 2010 Apr 20;18(4):662-74. doi: 10.1016/j.devcel.2010.02.014.
3
Distinct factors control histone variant H3.3 localization at specific genomic regions.
Cell. 2010 Mar 5;140(5):678-91. doi: 10.1016/j.cell.2010.01.003.
4
Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression.
PLoS Genet. 2009 Dec;5(12):e1000769. doi: 10.1371/journal.pgen.1000769. Epub 2009 Dec 11.
5
The logic of chromatin architecture and remodelling at promoters.
Nature. 2009 Sep 10;461(7261):193-8. doi: 10.1038/nature08450.
6
Variations in the composition of mammalian SWI/SNF chromatin remodelling complexes.
J Cell Biochem. 2009 Oct 15;108(3):565-76. doi: 10.1002/jcb.22288.
7
What controls nucleosome positions?
Trends Genet. 2009 Aug;25(8):335-43. doi: 10.1016/j.tig.2009.06.002. Epub 2009 Jul 10.
8
MicroRNA-mediated switching of chromatin-remodelling complexes in neural development.
Nature. 2009 Jul 30;460(7255):642-6. doi: 10.1038/nature08139. Epub 2009 Jun 28.
9
Chromatin: the interface between extrinsic cues and the epigenetic regulation of muscle regeneration.
Trends Cell Biol. 2009 Jun;19(6):286-94. doi: 10.1016/j.tcb.2009.03.002. Epub 2009 Apr 23.
10
An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency.
Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5181-6. doi: 10.1073/pnas.0812889106. Epub 2009 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验