Suppr超能文献

鉴定抑制剂浓度,以有效筛选和测量对溶质载体转运蛋白的抑制 Ki 值。

Identification of inhibitor concentrations to efficiently screen and measure inhibition Ki values against solute carrier transporters.

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA.

出版信息

Eur J Pharm Sci. 2010 Sep 11;41(1):43-52. doi: 10.1016/j.ejps.2010.05.013. Epub 2010 May 27.

Abstract

The objective was to identify inhibitor concentrations to efficiently screen and measure inhibition K(i) values of solute carrier (SLC) transporters. The intestinal bile acid transporter and its native substrate taurocholate were used as a model system. Inhibition experiments were conducted using 27 compounds. For each compound, the inhibition constant K(i) was obtained from the comprehensive inhibition profile, and referred as the reference K(i). K(i) values were also estimated from various partial profiles and were compared to the reference K(i). A screening K(i) was estimated from one data point and also compared to the reference K(i). Results indicate that K(i) can be accurately measured using an inhibitor concentration range of only 0-K(i) via five different inhibitor concentrations. Additionally, a screening concentration of 10-fold the substrate affinity K(t) for potent inhibitors (K(i)<20K(t)) and 100-fold K(t) for nonpotent inhibitors (K(i)>20K(t)) provided an accurate K(i) estimation. Results were validated through inhibition studies of two other SLC transporters. In conclusion, experimental conditions to screen and measure accurate transporter inhibition constant K(i) are suggested where a low range of inhibitor concentrations can be used. This approach is advantageous in that minimal compound is needed to perform studies and accommodates compounds with low aqueous solubility.

摘要

目的是确定抑制剂浓度,以有效地筛选和测量溶质载体(SLC)转运蛋白的抑制常数 K(i)值。肠胆酸转运蛋白及其天然底物牛磺胆酸盐被用作模型系统。使用 27 种化合物进行抑制实验。对于每种化合物,从综合抑制谱中获得抑制常数 K(i),并称为参考 K(i)。还从各种部分谱中估计了 K(i)值,并与参考 K(i)进行了比较。从一个数据点估计了一个筛选 K(i),并与参考 K(i)进行了比较。结果表明,通过使用五个不同的抑制剂浓度,仅在 0-K(i)的抑制剂浓度范围内就可以准确测量 K(i)。此外,对于强抑制剂(K(i)<20K(t)),筛选浓度为底物亲和力 K(t)的 10 倍,对于非强抑制剂(K(i)>20K(t)),筛选浓度为 K(t)的 100 倍,可以提供准确的 K(i)估计值。通过对另外两种 SLC 转运蛋白的抑制研究验证了结果。总之,提出了筛选和测量准确转运蛋白抑制常数 K(i)的实验条件,其中可以使用低范围的抑制剂浓度。这种方法的优点是,仅需要少量化合物即可进行研究,并且可以适应水溶性低的化合物。

相似文献

1
Identification of inhibitor concentrations to efficiently screen and measure inhibition Ki values against solute carrier transporters.
Eur J Pharm Sci. 2010 Sep 11;41(1):43-52. doi: 10.1016/j.ejps.2010.05.013. Epub 2010 May 27.
8
ATP-dependent export pumps and their inhibition by cyclosporins.
Adv Enzyme Regul. 1994;34:371-80. doi: 10.1016/0065-2571(94)90023-x.
9
Identification of taurocholate binding sites in ileal plasma membrane.
Am J Physiol. 1990 Sep;259(3 Pt 1):G394-401. doi: 10.1152/ajpgi.1990.259.3.G394.
10
Method to screen substrates of apical sodium-dependent bile acid transporter.
AAPS J. 2008 Dec;10(4):596-605. doi: 10.1208/s12248-008-9069-9. Epub 2008 Dec 16.

引用本文的文献

4
Prediction of Phytochemicals for Their Potential to Inhibit New Delhi Metallo β-Lactamase (NDM-1).
Pharmaceuticals (Basel). 2023 Oct 3;16(10):1404. doi: 10.3390/ph16101404.
6
Proteome-Based Investigation Identified Potential Drug Repurposable Small Molecules Against Monkeypox Disease.
Mol Biotechnol. 2024 Apr;66(4):626-640. doi: 10.1007/s12033-022-00595-w. Epub 2022 Nov 10.
7
Molecular Docking, Validation, Dynamics Simulations, and Pharmacokinetic Prediction of Phytochemicals Isolated From Against the HIV-1 Reverse Transcriptase.
Bioinform Biol Insights. 2022 Sep 26;16:11779322221125605. doi: 10.1177/11779322221125605. eCollection 2022.
8
Modelling and targeting mitochondrial protein tyrosine phosphatase 1: a computational approach.
In Silico Pharmacol. 2022 Jan 17;10(1):3. doi: 10.1007/s40203-022-00119-z. eCollection 2022.
9
Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease.
J Biomol Struct Dyn. 2022 Feb;40(2):585-611. doi: 10.1080/07391102.2020.1815584. Epub 2020 Sep 8.
10
Quantitative NTCP pharmacophore and lack of association between DILI and NTCP Inhibition.
Eur J Pharm Sci. 2015 Jan 23;66:1-9. doi: 10.1016/j.ejps.2014.09.005. Epub 2014 Sep 16.

本文引用的文献

2
Novel inhibitors of human organic cation/carnitine transporter (hOCTN2) via computational modeling and in vitro testing.
Pharm Res. 2009 Aug;26(8):1890-900. doi: 10.1007/s11095-009-9905-3. Epub 2009 May 13.
3
Method to screen substrates of apical sodium-dependent bile acid transporter.
AAPS J. 2008 Dec;10(4):596-605. doi: 10.1208/s12248-008-9069-9. Epub 2008 Dec 16.
4
Role of transport proteins in drug discovery and development: a pharmaceutical perspective.
Xenobiotica. 2008 Jul;38(7-8):676-708. doi: 10.1080/00498250801923855.
5
Reticulon RTN2B regulates trafficking and function of neuronal glutamate transporter EAAC1.
J Biol Chem. 2008 Mar 7;283(10):6561-71. doi: 10.1074/jbc.M708096200. Epub 2007 Dec 20.
6
Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target.
Mol Pharm. 2006 May-Jun;3(3):223-30. doi: 10.1021/mp060022d.
7
Enhancement of substrate-gated Cl- currents via rat glutamate transporter EAAT4 by PMA.
Am J Physiol Cell Physiol. 2006 May;290(5):C1334-40. doi: 10.1152/ajpcell.00443.2005.
8
Development of stably transfected monolayer overexpressing the human apical sodium-dependent bile acid transporter (hASBT).
Pharm Res. 2005 Aug;22(8):1269-80. doi: 10.1007/s11095-005-5274-8. Epub 2005 Aug 3.
10
Intestinal absorption of drugs mediated by drug transporters: mechanisms and regulation.
Drug Metab Pharmacokinet. 2003;18(1):1-15. doi: 10.2133/dmpk.18.1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验