Suppr超能文献

雀形目动物听觉丘脑在为自然声音生成复杂表现形式中的作用。

Role of the zebra finch auditory thalamus in generating complex representations for natural sounds.

机构信息

Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720-1650, USA.

出版信息

J Neurophysiol. 2010 Aug;104(2):784-98. doi: 10.1152/jn.00128.2010. Epub 2010 Jun 16.

Abstract

We estimated the spectrotemporal receptive fields of neurons in the songbird auditory thalamus, nucleus ovoidalis, and compared the neural representation of complex sounds in the auditory thalamus to those found in the upstream auditory midbrain nucleus, mesencephalicus lateralis dorsalis (MLd), and the downstream auditory pallial region, field L. Our data refute the idea that the primary sensory thalamus acts as a simple, relay nucleus: we find that the auditory thalamic receptive fields obtained in response to song are more complex than the ones found in the midbrain. Moreover, we find that linear tuning diversity and complexity in ovoidalis (Ov) are closer to those found in field L than in MLd. We also find prevalent tuning to intermediate spectral and temporal modulations, a feature that is unique to Ov. Thus even a feed-forward model of the sensory processing chain, where neural responses in the sensory thalamus reveals intermediate response properties between those in the sensory periphery and those in the primary sensory cortex, is inadequate in describing the tuning found in Ov. Based on these results, we believe that the auditory thalamic circuitry plays an important role in generating novel complex representations for specific features found in natural sounds.

摘要

我们估计了鸣禽听觉丘脑、卵形核神经元的光谱时域感受野,并将听觉丘脑对复杂声音的神经表示与上游听觉中脑核、外侧背核 (MLd) 和下游听觉脑皮层区、场 L 的神经表示进行了比较。我们的数据驳斥了初级感觉丘脑充当简单中继核的观点:我们发现,对鸣叫声的听觉丘脑反应的感受野比中脑的感受野更复杂。此外,我们发现卵形核 (Ov) 中的线性调谐多样性和复杂性与场 L 中的调谐更接近,而不是与 MLd 中的调谐接近。我们还发现对中间光谱和时间调制的普遍调谐,这是 Ov 独有的特征。因此,即使是在感觉处理链的前馈模型中,感觉丘脑的神经反应揭示了感觉外周和初级感觉皮层之间的中间反应特性,也不足以描述 Ov 中的调谐。基于这些结果,我们认为听觉丘脑回路在为自然声音中特定特征生成新颖的复杂表示方面发挥着重要作用。

相似文献

1
Role of the zebra finch auditory thalamus in generating complex representations for natural sounds.
J Neurophysiol. 2010 Aug;104(2):784-98. doi: 10.1152/jn.00128.2010. Epub 2010 Jun 16.
4
Organized representation of spectrotemporal features in songbird auditory forebrain.
J Neurosci. 2011 Nov 23;31(47):16977-90. doi: 10.1523/JNEUROSCI.2003-11.2011.
5
Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds.
Nat Neurosci. 2005 Oct;8(10):1371-9. doi: 10.1038/nn1536. Epub 2005 Sep 4.
6
7
Comparison of midbrain and thalamic space-specific neurons in barn owls.
J Neurophysiol. 2006 Feb;95(2):783-90. doi: 10.1152/jn.00833.2005.
8
Species differences in auditory processing dynamics in songbird auditory telencephalon.
Dev Neurobiol. 2007 Sep 15;67(11):1498-510. doi: 10.1002/dneu.20524.
10
Auditory spatial tuning at the crossroads of the midbrain and forebrain.
J Neurophysiol. 2009 Sep;102(3):1472-82. doi: 10.1152/jn.00400.2009. Epub 2009 Jul 1.

引用本文的文献

2
Estimating Mutual Information for Spike Trains: A Bird Song Example.
Entropy (Basel). 2023 Oct 3;25(10):1413. doi: 10.3390/e25101413.
3
Auditory thalamus dysfunction and pathophysiology in tinnitus: a predictive network hypothesis.
Brain Struct Funct. 2021 Jul;226(6):1659-1676. doi: 10.1007/s00429-021-02284-x. Epub 2021 May 2.
4
A Low-Rank Method for Characterizing High-Level Neural Computations.
Front Comput Neurosci. 2017 Jul 31;11:68. doi: 10.3389/fncom.2017.00068. eCollection 2017.
5
Heterogeneous organization and connectivity of the chicken auditory thalamus (Gallus gallus).
J Comp Neurol. 2017 Oct 1;525(14):3044-3071. doi: 10.1002/cne.24262. Epub 2017 Jul 13.
6
Cortical Transformation of Spatial Processing for Solving the Cocktail Party Problem: A Computational Model(1,2,3).
eNeuro. 2016 Feb 2;3(1). doi: 10.1523/ENEURO.0086-15.2015. eCollection 2016 Jan-Feb.
7
Parameter estimation of neuron models using in-vitro and in-vivo electrophysiological data.
Front Neuroinform. 2015 Apr 20;9:10. doi: 10.3389/fninf.2015.00010. eCollection 2015.
8
Neural processing of natural sounds.
Nat Rev Neurosci. 2014 Jun;15(6):355-66. doi: 10.1038/nrn3731.
10
A simple algorithm for averaging spike trains.
J Math Neurosci. 2013 Feb 25;3(1):3. doi: 10.1186/2190-8567-3-3.

本文引用的文献

1
Manipulation of a central auditory representation shapes learned vocal output.
Neuron. 2010 Jan 14;65(1):122-34. doi: 10.1016/j.neuron.2009.12.008.
2
Auditory spatial tuning at the crossroads of the midbrain and forebrain.
J Neurophysiol. 2009 Sep;102(3):1472-82. doi: 10.1152/jn.00400.2009. Epub 2009 Jul 1.
3
Functional groups in the avian auditory system.
J Neurosci. 2009 Mar 4;29(9):2780-93. doi: 10.1523/JNEUROSCI.2042-08.2009.
5
Organizing principles of spectro-temporal encoding in the avian primary auditory area field L.
Neuron. 2008 Jun 26;58(6):938-55. doi: 10.1016/j.neuron.2008.04.028.
6
What's that sound? Auditory area CLM encodes stimulus surprise, not intensity or intensity changes.
J Neurophysiol. 2008 Jun;99(6):2809-20. doi: 10.1152/jn.01270.2007. Epub 2008 Feb 20.
9
The thalamus is more than just a relay.
Curr Opin Neurobiol. 2007 Aug;17(4):417-22. doi: 10.1016/j.conb.2007.07.003. Epub 2007 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验