Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Phys Chem Chem Phys. 2010 Aug 21;12(31):8902-13. doi: 10.1039/b924910a. Epub 2010 Jun 16.
Changes in the ground and excited state electronic structure of the Ru(bpy)(3) (bpy = 2,2'-bipyridine) complex induced by functionalization of bpy ligands with carboxyl and methyl groups in their protonated and deprotonated forms are studied experimentally using absorption and emission spectroscopy and theoretically using density functional theory (DFT) and time dependent DFT (TDDFT). The introduction of the carboxyl groups shifts the metal-to-ligand-charge-transfer (MLCT) absorption and emission bands to lower energies in functionalized complexes. Our calculations show that this red-shift is due to the stabilization of the lowest unoccupied orbitals localized on the substituted ligands, while the energies of the highest occupied orbitals localized on the Ru-center are not significantly affected. Consistent with previously observed trends in optical spectra of related Ru(II) complexes, deprotonation of the carboxyl groups results in a blue shift in the absorption and phosphorescence spectra. The effect originates from interplay of positive and negative solvatochromism in the protonated and deprotonated complexes, respectively. This results in more delocalized character of the electron transition orbitals in the deprotonated species and a strong destabilization of the three lowest unoccupied orbitals localized on the substituted and unsubstituted ligands, all of which contribute to the lowest-energy optical transitions. We also found that owing to the complexity of the excited state potential energy surfaces, the calculated lowest triplet excited state can be either weakly optically allowed (3)MLCT or optically forbidden Ru (3)d-d transition depending on the initial wavefunction guess used in TDDFT calculations.
通过吸收和发射光谱实验以及密度泛函理论(DFT)和含时密度泛函理论(TDDFT)理论计算,研究了质子化和去质子化形式的 bpy 配体羧基和甲基官能化诱导的 Ru(bpy)(3)(bpy=2,2'-联吡啶)配合物的基态和激发态电子结构变化。引入羧基基团会使功能化配合物中的金属-配体电荷转移(MLCT)吸收和发射带移向较低的能量。我们的计算表明,这种红移是由于取代配体上的最低未占据轨道的稳定化,而局域在 Ru 中心的最高占据轨道的能量没有显著影响。与相关 Ru(II)配合物的光学光谱中先前观察到的趋势一致,羧基基团的去质子化导致吸收和磷光光谱蓝移。这种影响源于质子化和去质子化配合物中正负溶剂化变色的相互作用。这导致去质子化物种中电子跃迁轨道的离域性更强,并且取代和未取代配体上的三个最低未占据轨道的稳定性大大降低,所有这些都有助于最低能量的光跃迁。我们还发现,由于激发态势能面的复杂性,计算出的最低三重态激发态可以是弱光允许的(3)MLCT 或光禁阻的 Ru(3)d-d 跃迁,这取决于在 TDDFT 计算中使用的初始波函数猜测。