Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
J Phys Chem B. 2010 Jul 15;114(27):9031-8. doi: 10.1021/jp102205v.
The ultrafast fluorescence dynamics of photosystem I (PS I) purified from a marine centric diatom, Chaetoceros gracilis, at 17 K was studied using fluorescence up-conversion and streak-camera setups. The experiments were done for two kinds of sample preparations containing different amounts of the peripheral antenna proteins, the fucoxanthin-chlorophyll (Chl) binding proteins associated with PS I (FCPI). Upon excitation at 430 nm, which selectively excites Chl a mainly contained in the core complex, the fluorescence dynamics of both samples was roughly expressed by four decay-associated spectra (DASs) with time constants of ca. 5, ca. 22, ca. 100, and ca. 400 ps. These DAS components have corresponding counterparts in the results of a previous study of Thermosynechococcus elongatus PS I (Shibata et al. J. Phys. Chem. B 2010, 114, 2954) except for that with a time constant of ca. 22 ps. The similar distribution of the time constants suggests a shared light-harvesting pathway by PS I of these two organisms. The DAS with a ca. 400 ps time constant has its peak wavelength at around 710 nm, suggesting the presence of antenna pigment states with slightly lower excitation energy than that of P700. This antenna state acts as a shallow sink in the core complex of the diatom PS I and causes a specific temperature dependence of its fluorescence spectrum below 77 K. Excitation energy funneling into the shallow-sink state seems to take place within 0.2 ps, suggesting an extremely efficient energy transfer. Upon the selective excitation of Chl c in FCPI by a 460 nm laser, three DAS components suggesting excitation energy transfers were obtained. The 0.2 ps DAS shows the energy transfer from Chl c to Chl a within FCPI, while the 0.7 and 40 ps DASs suggest the energy transfer from FCPI to the core complex. The excitation energy seems to be effectively transferred from FCPI to the core complex in diatom PS I because the selective excitation of Chl c in FCPI does not induce a severe retardation of the overall light-harvesting kinetics.
使用荧光上转换和条纹相机装置研究了从海洋中心硅藻 Chaetoceros gracilis 中纯化的光系统 I (PS I) 的超快荧光动力学。实验针对两种样品制备方法进行,其中包含不同量的外周天线蛋白,即与 PS I 相关的叶黄素-叶绿素 (Chl) 结合蛋白 (FCPI)。在 430nm 激发下,选择性激发主要存在于核心复合物中的 Chl a,两种样品的荧光动力学均由四个衰减相关光谱 (DAS) 随时间表示,时间常数约为 5、22、100 和 400ps。这些 DAS 成分与 Thermosynechococcus elongatus PS I 的先前研究结果(Shibata 等人,J. Phys. Chem. B 2010, 114, 2954)中的对应成分相对应,除了时间常数约为 22ps 的对应成分外。相似的时间常数分布表明这两种生物体的 PS I 具有共享的光捕获途径。时间常数约为 400ps 的 DAS 的峰值波长约为 710nm,表明存在天线色素状态,其激发能量略低于 P700。这种天线状态作为硅藻 PS I 核心复合物中的浅阱,导致其荧光光谱在 77K 以下具有特定的温度依赖性。激发能量向浅阱状态的聚集似乎在 0.2ps 内发生,表明能量转移非常有效。通过 460nm 激光选择性激发 FCPI 中的 Chl c,获得了三个表明激发能量转移的 DAS 成分。0.2ps DAS 显示了 Chl c 到 FCPI 中 Chl a 的能量转移,而 0.7 和 40ps DAS 则表明了 FCPI 到核心复合物的能量转移。激发能量似乎有效地从 FCPI 转移到硅藻 PS I 的核心复合物,因为 FCPI 中 Chl c 的选择性激发不会导致整体光捕获动力学的严重延迟。