Suppr超能文献

在 15 K 下通过飞秒时间分辨荧光光谱学揭示了 Thermosynechococcus elongatus 中光系统 I 中三种动力学不同的红色叶绿素。

Kinetically distinct three red chlorophylls in photosystem I of Thermosynechococcus elongatus revealed by femtosecond time-resolved fluorescence spectroscopy at 15 K.

机构信息

Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8602, Japan.

出版信息

J Phys Chem B. 2010 Mar 4;114(8):2954-63. doi: 10.1021/jp909583r.

Abstract

Time-resolved fluorescence spectra of photosystem I (PS-I) trimeric complex isolated from a thermophilic cyanobacterium, Thermosynechococcus (T.) elongatus, were observed at 15 K over the time range from 100 fs to a few nanoseconds under P700-oxidized condition and 10 ps to a few nanoseconds under P700-reduced condition. Global-fitting analysis of the data of P700-oxidized condition revealed the existence of three kinetically different red chlorophylls (Chls) having the energy-transfer times to P700(+) of 6.1 ps (C(6.1 ps)), 140 ps (C(140 ps)), and 360 ps (C(360 ps)). According to the spectral shape of DAS, C(6.1 ps), C(140 ps), and C(360 ps) were assigned to the previously reported red Chls with the absorption maxima at 715 nm (C715), 710 nm (C710), and 719 nm (C719), respectively. In PS-I containing P700(+), ca. 60 Chls funnel the excitation energy into C(6.1 ps) in a subpicosecond time region at 15 K. The analysis of the present data together with the conclusions of the previous reports revealed that in PS-I containing a neutral P700 the direct energy transfer from the bulk Chls to P700 seems to dominate the energy-flow process. Simulation of the energy-transfer time to P700(+) based on Forster theory suggested the dimeric Chls A32-B7 and A33-A34 as the most probable candidates for C(140 ps) (C710) and C(360 ps) (C719), respectively. C(6.1 ps) (C715) was tentatively assigned to the dimeric Chl B24-B25 or A26-A27, for which the fastest energy transfer to P700(+) was predicted from the simulation. However, the estimated energy-transfer times to P700(+) for these dimeric Chls were 44-46 ps, which were still much slower than the observed value of 6.1 ps. A theoretical framework beyond the standard Forster theory might be required in order to account for the severe deviation.

摘要

在 P700 氧化条件下,观察到从嗜热蓝藻 Thermosynechococcus (T.) elongatus 分离的 PS-I 三聚体复合物的时间分辨荧光光谱,时间范围从 100 fs 到几纳秒;在 P700 还原条件下,时间范围从 10 ps 到几纳秒。对 P700 氧化条件下数据的全局拟合分析表明,存在三种动力学上不同的红色叶绿素(Chl),它们向 P700(+)的能量转移时间分别为 6.1 ps(C(6.1 ps))、140 ps(C(140 ps))和 360 ps(C(360 ps))。根据 DAS 的光谱形状,C(6.1 ps)、C(140 ps)和 C(360 ps)分别被分配给先前报道的吸收最大值为 715nm(C715)、710nm(C710)和 719nm(C719)的红色 Chl。在含有 P700(+)的 PS-I 中,在 15 K 时,约 60 个 Chl 在亚皮秒时间区域将激发能量传递到 C(6.1 ps)。对当前数据的分析以及以前报告的结论表明,在含有中性 P700 的 PS-I 中,直接从体相 Chl 到 P700 的能量转移似乎主导了能量流过程。基于 Forster 理论的对向 P700(+)的能量转移时间的模拟表明,二聚体 Chl A32-B7 和 A33-A34 分别是 C(140 ps)(C710)和 C(360 ps)(C719)最可能的候选物。C(6.1 ps)(C715)被暂时分配给二聚体 Chl B24-B25 或 A26-A27,因为从模拟预测,它们与 P700(+)的最快能量转移。然而,这些二聚体 Chl 向 P700(+)的估计能量转移时间为 44-46 ps,这仍然比观察到的 6.1 ps 慢得多。为了解释这种严重的偏差,可能需要超越标准 Forster 理论的理论框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验