Biomedical Photonic Imaging Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
ACS Nano. 2010 Jul 27;4(7):4081-9. doi: 10.1021/nn1009165.
An accurate estimation of optical absorption coefficient (microabs) and scattering coefficient (microsca) is important in characterizing nanoparticles for identifying or optimizing applications such as photothermal therapy and photoacoustic imaging. In this exciting period where several fascinating methods have been unveiled for the synthesis of various nanoparticles, the field is still lacking in the availability of efficient characterization methods. We introduce an accurate and simple methodology to optically characterize nanoparticles which could fill the gap. This is based on differential pathlength spectroscopy (DPS), a dual optical fiber approach, originally developed to detect cancer endoscopically by measuring the optical properties of tissue in small interrogation volumes. We expand its use to nanoparticles in a method that allows us to resolve the effects of microabs and microsca in the extinction coefficient of low concentration samples. We outline the measurement protocol using the DPS system and describe the analysis of the data taking additional inputs from electron microscopy and discrete dipole approximation (DDA) simulations. The DPS signal from the sample is first translated into the backscattering coefficient using a calibration constant. Further, the backscattering coefficient is converted via the simulated scattering phase function into the scattering coefficient. With this knowledge and extinction coefficient measured using a conventional photospectrometer, the absorption coefficient is calculated. We prove the validity of the method using spherical and rod-shaped gold nanoparticles, comparing the results with outputs from DDA simulations. We also briefly touch upon the dilemma of the choice of the appropriate dielectric function for gold at the nanoscale.
准确估计光学吸收系数(microabs)和散射系数(microsca)对于表征纳米粒子以识别或优化光热治疗和光声成像等应用非常重要。在这个令人兴奋的时期,已经揭示了几种用于合成各种纳米粒子的迷人方法,但该领域仍缺乏有效的表征方法。我们引入了一种准确而简单的方法来光学表征纳米粒子,可以填补这一空白。这基于差分路径长度光谱(DPS),这是一种双光纤方法,最初是为了通过测量小询问体积中组织的光学性质来在体内检测癌症而开发的。我们将其扩展到纳米粒子中,这种方法允许我们在低浓度样品的消光系数中分辨 microabs 和 microsca 的影响。我们概述了使用 DPS 系统进行测量的协议,并描述了使用电子显微镜和离散偶极子近似(DDA)模拟的附加输入来分析数据。首先,使用校准常数将 DPS 信号从样品转换为反向散射系数。此外,通过模拟散射相位函数将反向散射系数转换为散射系数。有了这些知识和使用常规分光光度计测量的消光系数,可以计算出吸收系数。我们使用球形和棒状金纳米粒子证明了该方法的有效性,并将结果与 DDA 模拟的结果进行了比较。我们还简要讨论了在纳米尺度上选择适当的金介电函数的难题。