Division of Nephrology, Department of Medicine, University of Washington, Kidney Research Institute, Seattle, Washington 98104-2499, USA.
J Am Soc Nephrol. 2010 Jul;21(7):1223-32. doi: 10.1681/ASN.2009111104. Epub 2010 Jun 17.
Phosphorus is an essential mineral that maintains cellular energy and mineralizes the skeleton. Because complex actions of ion transporters and regulatory hormones regulate serum phosphorus concentrations, genetic variation may determine interindividual variation in phosphorus metabolism. Here, we report a comprehensive genome-wide association study of serum phosphorus concentration. We evaluated 16,264 participants of European ancestry from the Cardiovascular Heath Study, Atherosclerosis Risk in Communities Study, Framingham Offspring Study, and the Rotterdam Study. We excluded participants with an estimated GFR <45 ml/min per 1.73 m(2) to focus on phosphorus metabolism under normal conditions. We imputed genotypes to approximately 2.5 million single-nucleotide polymorphisms in the HapMap and combined study-specific findings using meta-analysis. We tested top polymorphisms from discovery cohorts in a 5444-person replication sample. Polymorphisms in seven loci with minor allele frequencies 0.08 to 0.49 associate with serum phosphorus concentration (P = 3.5 x 10(-16) to 3.6 x 10(-7)). Three loci were near genes encoding the kidney-specific type IIa sodium phosphate co-transporter (SLC34A1), the calcium-sensing receptor (CASR), and fibroblast growth factor 23 (FGF23), proteins that contribute to phosphorus metabolism. We also identified genes encoding phosphatases, kinases, and phosphodiesterases that have yet-undetermined roles in phosphorus homeostasis. In the replication sample, five of seven top polymorphisms associate with serum phosphorous concentrations (P < 0.05 for each). In conclusion, common genetic variants associate with serum phosphorus in the general population. Further study of the loci identified in this study may help elucidate mechanisms of phosphorus regulation.
磷是一种维持细胞能量和矿化骨骼的必需矿物质。由于离子转运体和调节激素的复杂作用调节血清磷浓度,遗传变异可能决定个体间磷代谢的差异。在这里,我们报告了一项关于血清磷浓度的全基因组关联研究。我们评估了来自心血管健康研究、社区动脉粥样硬化风险研究、弗雷明汉后代研究和鹿特丹研究的 16264 名欧洲血统参与者。我们排除了估计肾小球滤过率<45ml/min/1.73m2的参与者,以关注正常条件下的磷代谢。我们将基因型估计值导入到 HapMap 和综合研究中的大约 250 万个单核苷酸多态性中,并使用荟萃分析综合研究特异性发现。我们在 5444 人的复制样本中测试了发现队列中的顶级多态性。7 个具有 0.08 至 0.49 等位基因频率的位点的多态性与血清磷浓度相关(P=3.5x10(-16)至 3.6x10(-7))。三个位点位于编码肾脏特异性 IIa 型钠磷酸盐共转运蛋白(SLC34A1)、钙敏感受体(CASR)和成纤维细胞生长因子 23(FGF23)的基因附近,这些蛋白有助于磷代谢。我们还鉴定了编码磷酸酶、激酶和磷酸二酯酶的基因,这些基因在磷稳态中具有尚未确定的作用。在复制样本中,七个前五位多态性中的五个与血清磷浓度相关(每个 P<0.05)。总之,常见的遗传变异与一般人群中的血清磷相关。对本研究中鉴定的位点的进一步研究可能有助于阐明磷调节的机制。