Suppr超能文献

仅使用 76 个核苷酸构建稳定的 tRNA 系统发育。

Stable tRNA-based phylogenies using only 76 nucleotides.

机构信息

Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA

出版信息

RNA. 2010 Aug;16(8):1469-77. doi: 10.1261/rna.726010. Epub 2010 Jun 17.

Abstract

tRNAs are among the most ancient, highly conserved sequences on earth, but are often thought to be poor phylogenetic markers because they are short, often subject to horizontal gene transfer, and easily change specificity. Here we use an algorithm now commonly used in microbial ecology, UniFrac, to cluster 175 genomes spanning all three domains of life based on the phylogenetic relationships among their complete tRNA pools. We find that the overall pattern of similarities and differences in the tRNA pools recaptures universal phylogeny to a remarkable extent, and that the resulting tree is similar to the distribution of bootstrapped rRNA trees from the same genomes. In contrast, the trees derived from tRNAs of identical specificity or of individual isoacceptors generally produced trees of lower quality. However, some tRNA isoacceptors were very good predictors of the overall pattern of organismal evolution. These results show that UniFrac can extract meaningful biological patterns from even phylogenies with high level of statistical inaccuracy and horizontal gene transfer, and that, overall, the pattern of tRNA evolution tracks universal phylogeny and provides a background against which we can test hypotheses about the evolution of individual isoacceptors.

摘要

tRNAs 是地球上最古老、高度保守的序列之一,但通常被认为是较差的系统发生标记,因为它们很短,经常受到水平基因转移的影响,并且容易改变特异性。在这里,我们使用微生物生态学中常用的一种算法,UniFrac,根据其完整 tRNA 库之间的系统发育关系,对跨越生命三个领域的 175 个基因组进行聚类。我们发现,tRNA 库的相似性和差异性的总体模式在很大程度上再现了普遍的系统发育,并且得到的树与来自相同基因组的 rRNA 树的bootstrap 分布相似。相比之下,来自相同特异性或单个同工受体的 tRNA 的树通常产生质量较低的树。然而,一些 tRNA 同工受体是生物体进化总体模式的很好的预测因子。这些结果表明,即使在具有高水平统计不准确性和水平基因转移的系统发育中,UniFrac 也可以从这些系统发育中提取有意义的生物学模式,并且总体而言,tRNA 进化的模式与普遍的系统发育保持一致,并为我们检验关于单个同工受体进化的假设提供了背景。

相似文献

1
Stable tRNA-based phylogenies using only 76 nucleotides.
RNA. 2010 Aug;16(8):1469-77. doi: 10.1261/rna.726010. Epub 2010 Jun 17.
2
Orthologs, turn-over, and remolding of tRNAs in primates and fruit flies.
BMC Genomics. 2016 Aug 11;17(1):617. doi: 10.1186/s12864-016-2927-4.
3
Codon Pairs are Phylogenetically Conserved: A comprehensive analysis of codon pairing conservation across the Tree of Life.
PLoS One. 2020 May 13;15(5):e0232260. doi: 10.1371/journal.pone.0232260. eCollection 2020.
8
Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes.
Mol Biol Evol. 2008 May;25(5):949-59. doi: 10.1093/molbev/msn051. Epub 2008 Feb 23.
9
tRNA signatures reveal a polyphyletic origin of SAR11 strains among alphaproteobacteria.
PLoS Comput Biol. 2014 Feb 27;10(2):e1003454. doi: 10.1371/journal.pcbi.1003454. eCollection 2014 Feb.
10
Evolution of initiator tRNAs and selection of methionine as the initiating amino acid.
RNA Biol. 2016 Sep;13(9):810-9. doi: 10.1080/15476286.2016.1195943. Epub 2016 Jun 20.

引用本文的文献

2
Enzymic recognition of amino acids drove the evolution of primordial genetic codes.
Nucleic Acids Res. 2024 Jan 25;52(2):558-571. doi: 10.1093/nar/gkad1160.
3
Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages.
ISME Commun. 2021 Jun 28;1(1):30. doi: 10.1038/s43705-021-00032-0.
4
tRNA modification profiles in obligate and moderate thermophilic bacilli.
Extremophiles. 2022 Feb 5;26(1):11. doi: 10.1007/s00792-022-01258-z.
7
On the Track of the Missing tRNA Genes: A Source of Non-Canonical Functions?
Front Mol Biosci. 2021 Mar 16;8:643701. doi: 10.3389/fmolb.2021.643701. eCollection 2021.
9
The complete mitochondrial genome of a parasite at the animal-fungal boundary.
Parasit Vectors. 2020 Feb 17;13(1):81. doi: 10.1186/s13071-020-3926-5.
10
Complete Mitogenome of a Leaf-Mining Buprestid Beetle, , and Its Phylogenetic Implications.
Genes (Basel). 2019 Dec 1;10(12):992. doi: 10.3390/genes10120992.

本文引用的文献

1
Eukaryotic initiator tRNA: finely tuned and ready for action.
FEBS Lett. 2010 Jan 21;584(2):396-404. doi: 10.1016/j.febslet.2009.11.047.
2
tRNAdb 2009: compilation of tRNA sequences and tRNA genes.
Nucleic Acids Res. 2009 Jan;37(Database issue):D159-62. doi: 10.1093/nar/gkn772. Epub 2008 Oct 28.
3
The convergence of carbohydrate active gene repertoires in human gut microbes.
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15076-81. doi: 10.1073/pnas.0807339105. Epub 2008 Sep 19.
4
SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB.
Nucleic Acids Res. 2007;35(21):7188-96. doi: 10.1093/nar/gkm864. Epub 2007 Oct 18.
5
PyCogent: a toolkit for making sense from sequence.
Genome Biol. 2007;8(8):R171. doi: 10.1186/gb-2007-8-8-r171.
6
Anticodon-dependent conservation of bacterial tRNA gene sequences.
RNA. 2007 May;13(5):651-60. doi: 10.1261/rna.345907. Epub 2007 Mar 22.
7
Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities.
Appl Environ Microbiol. 2007 Mar;73(5):1576-85. doi: 10.1128/AEM.01996-06. Epub 2007 Jan 12.
8
Emergence of the universal genetic code imprinted in an RNA record.
Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18095-100. doi: 10.1073/pnas.0608762103. Epub 2006 Nov 16.
9
Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences.
Nucleic Acids Res. 2006;34(20):5839-51. doi: 10.1093/nar/gkl732. Epub 2006 Oct 24.
10
UniFrac--an online tool for comparing microbial community diversity in a phylogenetic context.
BMC Bioinformatics. 2006 Aug 7;7:371. doi: 10.1186/1471-2105-7-371.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验