Suppr超能文献

基于统一图形模型的图像分割。

Image segmentation with a unified graphical model.

机构信息

Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2010 Aug;32(8):1406-25. doi: 10.1109/TPAMI.2009.145.

Abstract

We propose a unified graphical model that can represent both the causal and noncausal relationships among random variables and apply it to the image segmentation problem. Specifically, we first propose to employ Conditional Random Field (CRF) to model the spatial relationships among image superpixel regions and their measurements. We then introduce a multilayer Bayesian Network (BN) to model the causal dependencies that naturally exist among different image entities, including image regions, edges, and vertices. The CRF model and the BN model are then systematically and seamlessly combined through the theories of Factor Graph to form a unified probabilistic graphical model that captures the complex relationships among different image entities. Using the unified graphical model, image segmentation can be performed through a principled probabilistic inference. Experimental results on the Weizmann horse data set, on the VOC2006 cow data set, and on the MSRC2 multiclass data set demonstrate that our approach achieves favorable results compared to state-of-the-art approaches as well as those that use either the BN model or CRF model alone.

摘要

我们提出了一个统一的图形模型,可以表示随机变量之间的因果和非因果关系,并将其应用于图像分割问题。具体来说,我们首先提出利用条件随机场(CRF)来对图像超像素区域及其测量值之间的空间关系进行建模。然后,我们引入了多层贝叶斯网络(BN)来对不同图像实体之间存在的因果依赖关系进行建模,这些图像实体包括图像区域、边缘和顶点。CRF 模型和 BN 模型通过因子图的理论被系统地、无缝地结合在一起,形成了一个统一的概率图形模型,该模型可以捕捉不同图像实体之间的复杂关系。通过使用统一的图形模型,可以通过有原则的概率推理来进行图像分割。在 Weizmann 马数据集、VOC2006 牛数据集和 MSRC2 多类数据集上的实验结果表明,与最先进的方法以及仅使用 BN 模型或 CRF 模型的方法相比,我们的方法取得了良好的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验