UtopiaCompression Corporation, Los Angeles, CA 90064, USA.
IEEE Trans Image Process. 2011 Sep;20(9):2401-13. doi: 10.1109/TIP.2011.2128332. Epub 2011 Mar 17.
Chain graph (CG) is a hybrid probabilistic graphical model (PGM) capable of modeling heterogeneous relationships among random variables. So far, however, its application in image and video analysis is very limited due to lack of principled learning and inference methods for a CG of general topology. To overcome this limitation, we introduce methods to extend the conventional chain-like CG model to CG model with more general topology and the associated methods for learning and inference in such a general CG model. Specifically, we propose techniques to systematically construct a generally structured CG, to parameterize this model, to derive its joint probability distribution, to perform joint parameter learning, and to perform probabilistic inference in this model. To demonstrate the utility of such an extended CG, we apply it to two challenging image and video analysis problems: human activity recognition and image segmentation. The experimental results show improved performance of the extended CG model over the conventional directed or undirected PGMs. This study demonstrates the promise of the extended CG for effective modeling and inference of complex real-world problems.
链图 (CG) 是一种混合概率图形模型 (PGM),能够对随机变量之间的异构关系进行建模。然而,由于缺乏针对一般拓扑 CG 的有原则的学习和推理方法,其在图像和视频分析中的应用非常有限。为了克服这一限制,我们引入了将传统的链式 CG 模型扩展到具有更一般拓扑结构的 CG 模型的方法,以及在这种一般 CG 模型中进行学习和推理的相关方法。具体来说,我们提出了系统地构建一般结构 CG、参数化该模型、推导出其联合概率分布、进行联合参数学习以及在该模型中进行概率推理的技术。为了展示这种扩展 CG 的实用性,我们将其应用于两个具有挑战性的图像和视频分析问题:人体活动识别和图像分割。实验结果表明,扩展 CG 模型的性能优于传统的有向或无向 PGM。这项研究证明了扩展 CG 对于有效建模和推理复杂现实世界问题的潜力。