School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA.
IEEE Trans Pattern Anal Mach Intell. 2010 Aug;32(8):1459-73. doi: 10.1109/TPAMI.2009.142.
In this paper, we propose a particle filtering approach for the problem of registering two point sets that differ by a rigid body transformation. Typically, registration algorithms compute the transformation parameters by maximizing a metric given an estimate of the correspondence between points across the two sets of interest. This can be viewed as a posterior estimation problem, in which the corresponding distribution can naturally be estimated using a particle filter. In this work, we treat motion as a local variation in pose parameters obtained by running a few iterations of a certain local optimizer. Employing this idea, we introduce stochastic motion dynamics to widen the narrow band of convergence often found in local optimizer approaches for registration. Thus, the novelty of our method is threefold: First, we employ a particle filtering scheme to drive the point set registration process. Second, we present a local optimizer that is motivated by the correlation measure. Third, we increase the robustness of the registration performance by introducing a dynamic model of uncertainty for the transformation parameters. In contrast with other techniques, our approach requires no annealing schedule, which results in a reduction in computational complexity (with respect to particle size) as well as maintains the temporal coherency of the state (no loss of information). Also unlike some alternative approaches for point set registration, we make no geometric assumptions on the two data sets. Experimental results are provided that demonstrate the robustness of the algorithm to initialization, noise, missing structures, and/or differing point densities in each set, on several challenging 2D and 3D registration scenarios.
在本文中,我们提出了一种用于刚体变换下的点集配准问题的粒子滤波方法。通常,配准算法通过最大化给定两个感兴趣点集之间对应点估计的度量来计算变换参数。这可以看作是一个后验估计问题,其中相应的分布可以使用粒子滤波器自然地估计。在这项工作中,我们将运动视为通过运行几次特定局部优化器迭代获得的姿态参数的局部变化。利用这个想法,我们引入了随机运动动力学,以拓宽局部优化器方法中常见的配准收敛窄带。因此,我们的方法有三个新颖之处:首先,我们采用粒子滤波方案来驱动点集配准过程。其次,我们提出了一种基于相关度量的局部优化器。第三,我们通过引入变换参数的不确定性动态模型来提高配准性能的鲁棒性。与其他技术相比,我们的方法不需要退火计划,这降低了计算复杂度(相对于粒子大小),并保持了状态的时间一致性(没有信息丢失)。与点集配准的其他一些替代方法不同,我们对点集的两个数据集没有任何几何假设。提供了实验结果,证明了该算法对初始化、噪声、缺失结构和/或每个集中不同的点密度的鲁棒性,适用于几个具有挑战性的 2D 和 3D 配准场景。