Suppr超能文献

基于签名二次型距离的鲁棒点集配准

Robust Point Set Registration Using Signature Quadratic Form Distance.

作者信息

Li Liang, Yang Ming, Wang Chunxiang, Wang Bing

出版信息

IEEE Trans Cybern. 2020 May;50(5):2097-2109. doi: 10.1109/TCYB.2018.2845745. Epub 2018 Jun 26.

Abstract

Point set registration is a problem with a long history in many pattern recognition tasks. This paper presents a robust point set registration algorithm based on optimizing the distance between two probability distributions. A major problem in point to point algorithms is defining the correspondence between two point sets. This paper follows the idea of some probability-based point set registration methods by representing the point sets as Gaussian mixture models (GMMs). By optimizing the distance between the two GMMs, rigid transformations (rotation and translation) between two point sets can be obtained without having to find a correspondence. Previous studies have used L2, Kullback Leibler, etc. distance to measure similarity between two GMMs; however, these methods have problems with robustness to noise and outliers, especially when the covariance matrix is large, or a local minimum exists. Therefore, in this paper, the signature quadratic form distance is derived to measure the distribution similarity. The contribution of this paper lies in adopting the signature quadratic form distance for the point set registration algorithm. The experimental results show the precision and robustness of this algorithm and demonstrate that it outperforms other state-of-the-art point set registration algorithms regarding factors, such as noise, outliers, missing partial structures, and initial misalignment.

摘要

点集配准是许多模式识别任务中一个有着悠久历史的问题。本文提出了一种基于优化两个概率分布之间距离的鲁棒点集配准算法。点对点算法中的一个主要问题是定义两个点集之间的对应关系。本文遵循一些基于概率的点集配准方法的思路,将点集表示为高斯混合模型(GMM)。通过优化两个GMM之间的距离,可以获得两个点集之间的刚体变换(旋转和平移),而无需找到对应关系。先前的研究使用L2、库尔贝克·莱布勒等距离来衡量两个GMM之间的相似性;然而,这些方法在对噪声和离群值的鲁棒性方面存在问题,特别是当协方差矩阵很大或存在局部最小值时。因此,本文推导了签名二次型距离来衡量分布相似性。本文的贡献在于将签名二次型距离应用于点集配准算法。实验结果表明了该算法的精度和鲁棒性,并证明在噪声、离群值、部分结构缺失和初始错位等因素方面,它优于其他现有的点集配准算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验