Suppr超能文献

钙离子依赖的听觉中间神经元时间处理的控制:计算分析。

Calcium-dependent control of temporal processing in an auditory interneuron: a computational analysis.

机构信息

Center for Neuroscience and Kresge Hearing Laboratories, Louisiana State University Health Sciences Center, 2020 Gravier St., New Orleans, LA 70119, USA.

出版信息

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010 Sep;196(9):613-28. doi: 10.1007/s00359-010-0547-z. Epub 2010 Jun 18.

Abstract

Sensitivity to acoustic amplitude modulation in crickets differs between species and depends on carrier frequency (e.g., calling song vs. bat-ultrasound bands). Using computational tools, we explore how Ca(2+)-dependent mechanisms underlying selective attention can contribute to such differences in amplitude modulation sensitivity. For omega neuron 1 (ON1), selective attention is mediated by Ca(2+)-dependent feedback: Ca(2+) increases with excitation, activating a Ca(2+)-dependent after-hyperpolarizing current. We propose that Ca(2+) removal rate and the size of the after-hyperpolarizing current can determine ON1's temporal modulation transfer function (TMTF). This is tested using a conductance-based simulation calibrated to responses in vivo. The model shows that parameter values that simulate responses to single pulses are sufficient in simulating responses to modulated stimuli: no special modulation-sensitive mechanisms are necessary, as high and low-pass portions of the TMTF are due to Ca(2+)-dependent spike frequency adaptation and post-synaptic potential depression, respectively. Furthermore, variance in the two biophysical parameters is sufficient to produce TMTFs of varying bandwidth, shifting amplitude modulation sensitivity like that in different species and in response to different carrier frequencies. Thus, the hypothesis that the size of after-hyperpolarizing current and the rate of Ca(2+) removal can affect amplitude modulation sensitivity is computationally validated.

摘要

蟋蟀对声幅调制的敏感性在物种间存在差异,并且取决于载波频率(例如,求偶鸣声与蝙蝠超声波频带)。我们使用计算工具探索了选择性注意背后的 Ca(2+) 依赖性机制如何促成这种幅度调制敏感性的差异。对于ω神经元 1(ON1),选择性注意是通过 Ca(2+) 依赖性反馈介导的:[Ca(2+)](内部)随兴奋而增加,激活 Ca(2+) 依赖性后超极化电流。我们提出,Ca(2+) 去除率和后超极化电流的大小可以决定 ON1 的时间调制传递函数(TMTF)。这是通过使用基于电导的模拟并根据体内反应进行校准来测试的。该模型表明,模拟对单个脉冲的反应的参数值足以模拟对调制刺激的反应:不需要特殊的调制敏感机制,因为 TMTF 的高通和低通部分分别归因于 Ca(2+) 依赖性的尖峰频率适应和突触后电位的抑制。此外,两种生物物理参数的差异足以产生具有不同带宽的 TMTF,从而像在不同物种中以及对不同载波频率的响应一样,改变幅度调制敏感性。因此,大小后超极化电流和 Ca(2+) 去除率可以影响幅度调制敏感性的假设在计算上得到了验证。

相似文献

1
Calcium-dependent control of temporal processing in an auditory interneuron: a computational analysis.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010 Sep;196(9):613-28. doi: 10.1007/s00359-010-0547-z. Epub 2010 Jun 18.
2
A corollary discharge mechanism modulates central auditory processing in singing crickets.
J Neurophysiol. 2003 Mar;89(3):1528-40. doi: 10.1152/jn.0846.2002.
4
Carrier-dependent temporal processing in an auditory interneuron.
J Acoust Soc Am. 2008 May;123(5):2910-7. doi: 10.1121/1.2897025.
6
Neurite-specific Ca2+ dynamics underlying sound processing in an auditory interneurone.
Dev Neurobiol. 2007 Jan;67(1):68-80. doi: 10.1002/dneu.20323.
7
Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron.
J Neurophysiol. 2004 Aug;92(2):939-48. doi: 10.1152/jn.00111.2004. Epub 2004 Mar 24.
8
Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior.
J Neurosci. 2012 Jul 11;32(28):9601-12. doi: 10.1523/JNEUROSCI.1170-12.2012.
10
Temporal and directional processing by an identified interneuron, ON1, compared in cricket species that sing with different tempos.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Apr;191(4):363-72. doi: 10.1007/s00359-004-0591-7. Epub 2005 Jan 25.

引用本文的文献

1
Tonotopic Ca dynamics and sound processing in auditory interneurons of the bush-cricket Mecopoda elongata.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 May;210(3):353-369. doi: 10.1007/s00359-023-01638-6. Epub 2023 May 24.
2
Local prothoracic auditory neurons in Ensifera.
Front Neurosci. 2022 Dec 21;16:1087050. doi: 10.3389/fnins.2022.1087050. eCollection 2022.
3
A fast BK-type KCa current acts as a postsynaptic modulator of temporal selectivity for communication signals.
Front Cell Neurosci. 2014 Sep 17;8:286. doi: 10.3389/fncel.2014.00286. eCollection 2014.
4
Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Apr;199(4):295-313. doi: 10.1007/s00359-013-0794-x. Epub 2013 Jan 24.

本文引用的文献

1
Temporal coding by populations of auditory receptor neurons.
J Neurophysiol. 2010 Mar;103(3):1614-21. doi: 10.1152/jn.00621.2009. Epub 2010 Jan 13.
3
The origin of adaptation in the auditory pathway of locusts is specific to cell type and function.
J Neurosci. 2009 Feb 25;29(8):2626-36. doi: 10.1523/JNEUROSCI.4800-08.2009.
4
Rapid neural adaptation to sound level statistics.
J Neurosci. 2008 Jun 18;28(25):6430-8. doi: 10.1523/JNEUROSCI.0470-08.2008.
5
Carrier-dependent temporal processing in an auditory interneuron.
J Acoust Soc Am. 2008 May;123(5):2910-7. doi: 10.1121/1.2897025.
6
Serotonergic modulation of afterhyperpolarization in a neuron that contributes to learning in the leech.
J Neurophysiol. 2008 Feb;99(2):605-16. doi: 10.1152/jn.00989.2007. Epub 2007 Nov 28.
7
In vivo Ca2+ dynamics in a cricket auditory neuron: an example of chemical computation.
Science. 1994 Feb 11;263(5148):823-6. doi: 10.1126/science.263.5148.823.
8
Temporal pattern as a cue for species-specific calling song recognition in crickets.
Science. 1979 Apr 27;204(4391):429-32. doi: 10.1126/science.204.4391.429.
9
Genetic control of song specificity in crickets.
Science. 1973 Apr 6;180(4081):82-3. doi: 10.1126/science.180.4081.82.
10
Roles of mitochondria and temperature in the control of intracellular calcium in adult rat sensory neurons.
Cell Calcium. 2008 Apr;43(4):388-404. doi: 10.1016/j.ceca.2007.07.001. Epub 2007 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验