Suppr超能文献

快速 BK 型钙激活钾电流作为通讯信号时间选择性的突触后调制器。

A fast BK-type KCa current acts as a postsynaptic modulator of temporal selectivity for communication signals.

机构信息

Department of Biology, Washington University in St. Louis St. Louis, MO, USA ; Division of Biological Science, Graduate School of Science, Nagoya University Nagoya, Japan.

Department of Biology, Washington University in St. Louis St. Louis, MO, USA.

出版信息

Front Cell Neurosci. 2014 Sep 17;8:286. doi: 10.3389/fncel.2014.00286. eCollection 2014.

Abstract

Temporal patterns of spiking often convey behaviorally relevant information. Various synaptic mechanisms and intrinsic membrane properties can influence neuronal selectivity to temporal patterns of input. However, little is known about how synaptic mechanisms and intrinsic properties together determine the temporal selectivity of neuronal output. We tackled this question by recording from midbrain electrosensory neurons in mormyrid fish, in which the processing of temporal intervals between communication signals can be studied in a reduced in vitro preparation. Mormyrids communicate by varying interpulse intervals (IPIs) between electric pulses. Within the midbrain posterior exterolateral nucleus (ELp), the temporal patterns of afferent spike trains are filtered to establish single-neuron IPI tuning. We performed whole-cell recording from ELp neurons in a whole-brain preparation and examined the relationship between intrinsic excitability and IPI tuning. We found that spike frequency adaptation of ELp neurons was highly variable. Postsynaptic potentials (PSPs) of strongly adapting (phasic) neurons were more sharply tuned to IPIs than weakly adapting (tonic) neurons. Further, the synaptic filtering of IPIs by tonic neurons was more faithfully converted into variation in spiking output, particularly at short IPIs. Pharmacological manipulation under current- and voltage-clamp revealed that tonic firing is mediated by a fast, large-conductance Ca(2+)-activated K(+) (KCa) current (BK) that speeds up action potential repolarization. These results suggest that BK currents can shape the temporal filtering of sensory inputs by modifying both synaptic responses and PSP-to-spike conversion. Slow SK-type KCa currents have previously been implicated in temporal processing. Thus, both fast and slow KCa currents can fine-tune temporal selectivity.

摘要

神经元发放的时间模式通常传递与行为相关的信息。各种突触机制和内在膜特性可以影响神经元对输入时间模式的选择性。然而,对于突触机制和内在特性如何共同决定神经元输出的时间选择性,我们知之甚少。我们通过记录电鳗鱼中中脑的电感觉神经元来解决这个问题,在这种鱼中,可以在简化的体外制备中研究通信信号之间的时间间隔的处理。电鳗通过改变电脉冲之间的脉冲间隔 (IPI) 来进行通信。在后外侧中脑核 (ELp) 中,传入的尖峰序列的时间模式被过滤以建立单个神经元 IPI 调谐。我们在整个大脑制备中对 ELp 神经元进行全细胞记录,并检查内在兴奋性与 IPI 调谐之间的关系。我们发现,ELp 神经元的尖峰频率适应具有高度可变性。强适应(相位)神经元的突触后电位 (PSP) 比弱适应(紧张)神经元对 IPI 的调谐更尖锐。此外,紧张神经元对 IPI 的突触过滤更忠实地转化为尖峰输出的变化,特别是在短 IPI 时。在电流和电压钳下进行的药理学处理表明,紧张放电是由快速、大电导 Ca(2+)-激活的 K(+) (BK) 电流介导的,该电流加速动作电位复极化。这些结果表明,BK 电流可以通过改变突触反应和 PSP 到尖峰转换来塑造感觉输入的时间滤波。先前已经表明,慢速 SK 型 BK 电流参与了时间处理。因此,快速和慢速 BK 电流都可以微调时间选择性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf3e/4166317/a287ddf3994c/fncel-08-00286-g001.jpg

相似文献

1
A fast BK-type KCa current acts as a postsynaptic modulator of temporal selectivity for communication signals.
Front Cell Neurosci. 2014 Sep 17;8:286. doi: 10.3389/fncel.2014.00286. eCollection 2014.
2
Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior.
J Neurosci. 2009 Jul 29;29(30):9417-28. doi: 10.1523/JNEUROSCI.1980-09.2009.
3
Extensive excitatory network interactions shape temporal processing of communication signals in a model sensory system.
J Neurophysiol. 2013 Jul;110(2):456-69. doi: 10.1152/jn.00145.2013. Epub 2013 Apr 24.
4
A diversity of synaptic filters are created by temporal summation of excitation and inhibition.
J Neurosci. 2011 Oct 12;31(41):14721-34. doi: 10.1523/JNEUROSCI.1424-11.2011.
5
Short-term depression, temporal summation, and onset inhibition shape interval tuning in midbrain neurons.
J Neurosci. 2014 Oct 22;34(43):14272-87. doi: 10.1523/JNEUROSCI.2299-14.2014.
6
Iberiotoxin-sensitive and -insensitive BK currents in Purkinje neuron somata.
J Neurophysiol. 2013 May;109(10):2528-41. doi: 10.1152/jn.00127.2012. Epub 2013 Feb 27.
7
Short-term synaptic plasticity contributes to the temporal filtering of electrosensory information.
J Neurosci. 2000 Sep 15;20(18):7122-30. doi: 10.1523/JNEUROSCI.20-18-07122.2000.
8
Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.
J Neurosci. 2016 Aug 24;36(34):8985-9000. doi: 10.1523/JNEUROSCI.0648-16.2016.
10
Temporal selectivity in midbrain electrosensory neurons identified by modal variation in active sensing.
J Neurophysiol. 2010 Jul;104(1):498-507. doi: 10.1152/jn.00731.2009. Epub 2010 May 26.

引用本文的文献

1
Large conductance voltage-and calcium-activated K (BK) channel in health and disease.
Front Pharmacol. 2024 Mar 22;15:1373507. doi: 10.3389/fphar.2024.1373507. eCollection 2024.
4
Acoustic Pattern Recognition and Courtship Songs: Insights from Insects.
Annu Rev Neurosci. 2019 Jul 8;42:129-147. doi: 10.1146/annurev-neuro-080317-061839. Epub 2019 Feb 20.
5
Short-Term Synaptic Plasticity as a Mechanism for Sensory Timing.
Trends Neurosci. 2018 Oct;41(10):701-711. doi: 10.1016/j.tins.2018.08.001. Epub 2018 Sep 25.
6
The cellular and circuit basis for evolutionary change in sensory perception in mormyrid fishes.
Sci Rep. 2017 Jun 19;7(1):3783. doi: 10.1038/s41598-017-03951-y.
7
Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.
J Neurosci. 2016 Aug 24;36(34):8985-9000. doi: 10.1523/JNEUROSCI.0648-16.2016.
8
Short-term depression, temporal summation, and onset inhibition shape interval tuning in midbrain neurons.
J Neurosci. 2014 Oct 22;34(43):14272-87. doi: 10.1523/JNEUROSCI.2299-14.2014.

本文引用的文献

2
Multiplexed temporal coding of electric communication signals in mormyrid fishes.
J Exp Biol. 2013 Jul 1;216(Pt 13):2365-79. doi: 10.1242/jeb.082289.
3
Extensive excitatory network interactions shape temporal processing of communication signals in a model sensory system.
J Neurophysiol. 2013 Jul;110(2):456-69. doi: 10.1152/jn.00145.2013. Epub 2013 Apr 24.
4
Large-conductance calcium-activated potassium current modulates excitability in isolated canine intracardiac neurons.
Am J Physiol Cell Physiol. 2013 Feb 1;304(3):C280-6. doi: 10.1152/ajpcell.00148.2012. Epub 2012 Nov 28.
6
A diversity of synaptic filters are created by temporal summation of excitation and inhibition.
J Neurosci. 2011 Oct 12;31(41):14721-34. doi: 10.1523/JNEUROSCI.1424-11.2011.
7
Small-conductance Ca2+-activated K+ channels: form and function.
Annu Rev Physiol. 2012;74:245-69. doi: 10.1146/annurev-physiol-020911-153336. Epub 2011 Sep 19.
8
Sound localization: Jeffress and beyond.
Curr Opin Neurobiol. 2011 Oct;21(5):745-51. doi: 10.1016/j.conb.2011.05.008. Epub 2011 Jun 7.
9
Potassium channel modulation and auditory processing.
Hear Res. 2011 Sep;279(1-2):32-42. doi: 10.1016/j.heares.2011.03.004. Epub 2011 Mar 21.
10
Tuning of synaptic responses: an organizing principle for optimization of neural circuits.
Trends Neurosci. 2011 Feb;34(2):51-60. doi: 10.1016/j.tins.2010.10.003. Epub 2010 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验