Suppr超能文献

鞘脂代谢途径在血糖调节中的曲折变化。

The twists and turns of sphingolipid pathway in glucose regulation.

机构信息

Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.

出版信息

Biochimie. 2011 Jan;93(1):32-8. doi: 10.1016/j.biochi.2010.05.016. Epub 2010 May 31.

Abstract

Palmitic acid is a saturated fat found in foods that lead to obesity, cardiovascular disease, and Type II diabetes. It is linked to the development of resistance to insulin stimulation in muscle, liver and other organs involved in glucose metabolism, which, in turn, underlines the onset of Type II diabetes. The cellular and molecular mechanisms of this insulin resistance are complex and not completely understood. This article is focused on the role of palmitic acid as a precursor in the synthesis of sphingolipids, a class of lipid molecules that participate in cellular stress response. Recent evidence had indicated that increased dietary supply of palmitate can stimulate the rate of sphingolipid synthesis in "lean" tissues and generate excessive amounts of sphingolipid metabolites that have a negative effect on the insulin signaling cascade. Many experimental results point to the existence of a causative link between sphingolipid synthesis, insulin response, and hyperglycemia. It is not yet clear, however whether ceramides or glycosphingolipids are involved as both have been implicated to be inhibitors of the insulin signaling cascade. Evidence for a coordinated regulation of sphingolipid and tri/diacylglycerol metabolism complicates further the delineation of a single mechanism of sphingolipid effect on glucose homeostasis.

摘要

软脂酸是一种在导致肥胖、心血管疾病和 2 型糖尿病的食物中发现的饱和脂肪。它与肌肉、肝脏和其他参与葡萄糖代谢的器官对胰岛素刺激的抵抗力的发展有关,这反过来又强调了 2 型糖尿病的发生。这种胰岛素抵抗的细胞和分子机制很复杂,尚未完全了解。本文重点介绍软脂酸作为鞘脂合成前体的作用,鞘脂是参与细胞应激反应的一类脂质分子。最近的证据表明,饮食中软脂酸盐的供应增加可以刺激“瘦”组织中鞘脂合成的速度,并产生大量对胰岛素信号级联有负面影响的鞘脂代谢物。许多实验结果表明,鞘脂合成、胰岛素反应和高血糖之间存在因果关系。然而,尚不清楚神经酰胺或糖鞘脂是否参与其中,因为它们都被认为是胰岛素信号级联的抑制剂。鞘脂和三酰基甘油代谢的协调调控进一步复杂化了阐明鞘脂对葡萄糖稳态的单一作用机制。

相似文献

1
The twists and turns of sphingolipid pathway in glucose regulation.
Biochimie. 2011 Jan;93(1):32-8. doi: 10.1016/j.biochi.2010.05.016. Epub 2010 May 31.
2
Sphingolipids as a Culprit of Mitochondrial Dysfunction in Insulin Resistance and Type 2 Diabetes.
Front Endocrinol (Lausanne). 2021 Mar 18;12:635175. doi: 10.3389/fendo.2021.635175. eCollection 2021.
3
Sphingolipid Metabolism: New Insight into Ceramide-Induced Lipotoxicity in Muscle Cells.
Int J Mol Sci. 2019 Jan 23;20(3):479. doi: 10.3390/ijms20030479.
7
The effect of enterolactone on sphingolipid pathway and hepatic insulin resistance development in HepG2 cells.
Life Sci. 2019 Jan 15;217:1-7. doi: 10.1016/j.lfs.2018.11.044. Epub 2018 Nov 20.
9
A single prior bout of exercise protects against palmitate-induced insulin resistance despite an increase in total ceramide content.
Am J Physiol Regul Integr Comp Physiol. 2011 May;300(5):R1200-8. doi: 10.1152/ajpregu.00091.2010. Epub 2011 Feb 16.

引用本文的文献

1
2
Lipidomics in Biomarker Research.
Handb Exp Pharmacol. 2022;270:493-510. doi: 10.1007/164_2021_517.
3
The Impact of Dietary Sphingolipids on Intestinal Microbiota and Gastrointestinal Immune Homeostasis.
Front Immunol. 2021 May 14;12:635704. doi: 10.3389/fimmu.2021.635704. eCollection 2021.
4
Changes in Serum Sphingomyelin After Roux-en-Y Gastric Bypass Surgery Are Related to Diabetes Status.
Front Endocrinol (Lausanne). 2018 Apr 25;9:172. doi: 10.3389/fendo.2018.00172. eCollection 2018.
5
Disrupted sphingolipid metabolism following acute clozapine and olanzapine administration.
J Biomed Sci. 2018 May 2;25(1):40. doi: 10.1186/s12929-018-0437-1.
6
L-serine supplementation lowers diabetes incidence and improves blood glucose homeostasis in NOD mice.
PLoS One. 2018 Mar 15;13(3):e0194414. doi: 10.1371/journal.pone.0194414. eCollection 2018.
8
Lipidomic and metabolic changes in the P4-type ATPase ATP10D deficient C57BL/6J wild type mice upon rescue of ATP10D function.
PLoS One. 2017 May 25;12(5):e0178368. doi: 10.1371/journal.pone.0178368. eCollection 2017.
9
Lipotoxicity augments glucotoxicity-induced mitochondrial damage in the development of diabetic retinopathy.
Invest Ophthalmol Vis Sci. 2015 May;56(5):2985-92. doi: 10.1167/iovs.15-16466.
10
Effects of dairy protein and fat on the metabolic syndrome and type 2 diabetes.
Rev Diabet Stud. 2014 Summer;11(2):153-66. doi: 10.1900/RDS.2014.11.153. Epub 2014 Aug 10.

本文引用的文献

1
Hepatic glycosphingolipid deficiency and liver function in mice.
Hepatology. 2010 May;51(5):1799-809. doi: 10.1002/hep.23545.
2
Intracellular trafficking of ceramide by ceramide transfer protein.
Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(4):426-37. doi: 10.2183/pjab.86.426.
3
A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways.
J Biol Chem. 2010 Apr 2;285(14):10902-10. doi: 10.1074/jbc.M109.077594. Epub 2010 Jan 28.
4
Glycosphingolipids--nature, function, and pharmacological modulation.
Angew Chem Int Ed Engl. 2009;48(47):8848-69. doi: 10.1002/anie.200902620.
5
Membrane microdomains and insulin resistance.
FEBS Lett. 2010 May 3;584(9):1864-71. doi: 10.1016/j.febslet.2009.10.012. Epub 2009 Oct 12.
9
Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome.
Am J Physiol Endocrinol Metab. 2009 Jul;297(1):E211-24. doi: 10.1152/ajpendo.91014.2008. Epub 2009 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验