Suppr超能文献

存在于艰难梭菌孢子中的假定发芽受体的动力学证据。

Kinetic evidence for the presence of putative germination receptors in Clostridium difficile spores.

机构信息

Department of Chemistry, University of Nevada, Las Vegas, NV 89154, USA.

出版信息

J Bacteriol. 2010 Aug;192(16):4215-22. doi: 10.1128/JB.00488-10. Epub 2010 Jun 18.

Abstract

Clostridium difficile is a spore-forming bacterium that causes Clostridium difficile-associated disease (CDAD). Intestinal microflora keeps C. difficile in the spore state and prevents colonization. Following antimicrobial treatment, the microflora is disrupted, and C. difficile spores germinate in the intestines. The resulting vegetative cells are believed to fill empty niches left by the depleted microbial community and establish infection. Thus, germination of C. difficile spores is the first required step in CDAD. Interestingly, C. difficile genes encode most known spore-specific protein necessary for germination, except for germination (Ger) receptors. Even though C. difficile Ger receptors have not been identified, taurocholate (a bile salt) and glycine (an amino acid) have been shown to be required for spore germination. Furthermore, chenodeoxycholate, another bile salt, can inhibit taurocholate-induced C. difficile spore germination. In the present study, we examined C. difficile spore germination kinetics to determine whether taurocholate acts as a specific germinant that activates unknown germination receptors or acts nonspecifically by disrupting spores' membranes. Kinetic analysis of C. difficile spore germination suggested the presence of distinct receptors for taurocholate and glycine. Furthermore, taurocholate, glycine, and chenodeoxycholate seem to bind to C. difficile spores through a complex mechanism, where both receptor homo- and heterocomplexes are formed. The kinetic data also point to an ordered sequential progression of binding where taurocholate must be recognized first before detection of glycine can take place. Finally, comparing calculated kinetic parameters with intestinal concentrations of the two germinants suggests a mechanism for the preferential germination of C. difficile spores in antibiotic-treated individuals.

摘要

艰难梭菌是一种产芽孢的细菌,可导致艰难梭菌相关性疾病(CDAD)。肠道微生物群使艰难梭菌保持在芽孢状态并防止定植。在进行抗生素治疗后,微生物群被破坏,艰难梭菌芽孢在肠道中发芽。据信,由此产生的营养细胞填补了因微生物群落耗竭而留下的空生态位,并建立感染。因此,艰难梭菌芽孢的发芽是 CDAD 的第一步。有趣的是,艰难梭菌基因编码了大多数已知的与发芽相关的芽孢特异性蛋白,除了发芽(Ger)受体。尽管尚未鉴定出艰难梭菌 Ger 受体,但已证明牛磺胆酸钠(一种胆汁盐)和甘氨酸(一种氨基酸)是芽孢发芽所必需的。此外,另一种胆汁盐鹅脱氧胆酸可以抑制牛磺胆酸钠诱导的艰难梭菌芽孢发芽。在本研究中,我们检查了艰难梭菌芽孢发芽动力学,以确定牛磺胆酸钠是否作为激活未知发芽受体的特异性发芽剂起作用,还是通过破坏芽孢的膜而起非特异性作用。艰难梭菌芽孢发芽的动力学分析表明存在牛磺胆酸钠和甘氨酸的独特受体。此外,牛磺胆酸钠、甘氨酸和鹅脱氧胆酸似乎通过一种复杂的机制结合到艰难梭菌芽孢上,其中形成了受体同型和异型复合物。动力学数据还表明,存在结合的有序顺序进展,其中必须首先识别牛磺胆酸钠,然后才能检测到甘氨酸的存在。最后,将计算出的动力学参数与两种启动子在肠道中的浓度进行比较,提示了一种在抗生素治疗个体中艰难梭菌芽孢优先发芽的机制。

相似文献

1
Kinetic evidence for the presence of putative germination receptors in Clostridium difficile spores.
J Bacteriol. 2010 Aug;192(16):4215-22. doi: 10.1128/JB.00488-10. Epub 2010 Jun 18.
2
Mapping interactions between germinants and Clostridium difficile spores.
J Bacteriol. 2011 Jan;193(1):274-82. doi: 10.1128/JB.00980-10. Epub 2010 Oct 22.
3
Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid.
J Bacteriol. 2010 Oct;192(19):4983-90. doi: 10.1128/JB.00610-10. Epub 2010 Jul 30.
4
Hierarchical recognition of amino acid co-germinants during Clostridioides difficile spore germination.
Anaerobe. 2018 Feb;49:41-47. doi: 10.1016/j.anaerobe.2017.12.001. Epub 2017 Dec 6.
5
Progesterone analogs influence germination of Clostridium sordellii and Clostridium difficile spores in vitro.
J Bacteriol. 2011 Jun;193(11):2776-83. doi: 10.1128/JB.00058-11. Epub 2011 Apr 8.
6
Spores of Clostridium difficile clinical isolates display a diverse germination response to bile salts.
PLoS One. 2012;7(2):e32381. doi: 10.1371/journal.pone.0032381. Epub 2012 Feb 22.
9
Mechanism of germination inhibition of Clostridioides difficile spores by an aniline substituted cholate derivative (CaPA).
J Antibiot (Tokyo). 2023 Jun;76(6):335-345. doi: 10.1038/s41429-023-00612-3. Epub 2023 Apr 4.
10

引用本文的文献

1
Phenotypic analysis of various ribotypes reveals consistency among core processes.
Appl Environ Microbiol. 2025 Jun 24:e0096425. doi: 10.1128/aem.00964-25.
2
Antibiotic-Associated Diarrhea Beyond : A Scoping Review.
Brown J Hosp Med. 2022 Nov 1;2(1):39745. doi: 10.56305/001c.39745. eCollection 2023.
3
Phenotypic analysis of various ribotypes reveals consistency among core processes.
bioRxiv. 2025 Jan 10:2025.01.10.632434. doi: 10.1101/2025.01.10.632434.
4
The Impact of YabG Mutations on Clostridioides difficile Spore Germination and Processing of Spore Substrates.
Mol Microbiol. 2024 Oct;122(4):534-548. doi: 10.1111/mmi.15316. Epub 2024 Sep 11.
5
The impact of YabG mutations on spore germination and processing of spore substrates.
bioRxiv. 2024 Jun 10:2024.06.10.598338. doi: 10.1101/2024.06.10.598338.
7
Comparison of sporulation and germination conditions for type A and G strains.
Front Microbiol. 2023 May 9;14:1143399. doi: 10.3389/fmicb.2023.1143399. eCollection 2023.
8
Mechanism of germination inhibition of Clostridioides difficile spores by an aniline substituted cholate derivative (CaPA).
J Antibiot (Tokyo). 2023 Jun;76(6):335-345. doi: 10.1038/s41429-023-00612-3. Epub 2023 Apr 4.
9
Clostridioides difficile bile salt hydrolase activity has substrate specificity and affects biofilm formation.
NPJ Biofilms Microbiomes. 2022 Nov 30;8(1):94. doi: 10.1038/s41522-022-00358-0.
10
Imaging Clostridioides difficile Spore Germination and Germination Proteins.
J Bacteriol. 2022 Jul 19;204(7):e0021022. doi: 10.1128/jb.00210-22. Epub 2022 Jun 28.

本文引用的文献

1
Metabolism of bile salts in mice influences spore germination in Clostridium difficile.
PLoS One. 2010 Jan 15;5(1):e8740. doi: 10.1371/journal.pone.0008740.
2
Dissecting interactions between nucleosides and germination receptors in Bacillus cereus 569 spores.
Microbiology (Reading). 2010 Apr;156(Pt 4):1244-1255. doi: 10.1099/mic.0.030270-0. Epub 2009 Dec 24.
3
A mariner-based transposon system for in vivo random mutagenesis of Clostridium difficile.
Appl Environ Microbiol. 2010 Feb;76(4):1103-9. doi: 10.1128/AEM.02525-09. Epub 2009 Dec 18.
4
Requirements for germination of Clostridium sordellii spores in vitro.
J Bacteriol. 2010 Jan;192(2):418-25. doi: 10.1128/JB.01226-09. Epub 2009 Nov 13.
5
Biology and genomic analysis of Clostridium botulinum.
Adv Microb Physiol. 2009;55:183-265, 320. doi: 10.1016/S0065-2911(09)05503-9.
6
Physical and chemical factors influencing the germination of Clostridium difficile spores.
J Appl Microbiol. 2008 Dec;105(6):2223-30. doi: 10.1111/j.1365-2672.2008.03965.x.
7
Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination.
J Bacteriol. 2009 Feb;191(3):1115-7. doi: 10.1128/JB.01260-08. Epub 2008 Dec 5.
9
Determination of intralumenal individual bile acids by HPLC with charged aerosol detection.
J Lipid Res. 2008 Dec;49(12):2690-5. doi: 10.1194/jlr.D800039-JLR200. Epub 2008 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验