Department of Chemistry, University of Nevada, Las Vegas, NV 89154, USA.
J Bacteriol. 2010 Aug;192(16):4215-22. doi: 10.1128/JB.00488-10. Epub 2010 Jun 18.
Clostridium difficile is a spore-forming bacterium that causes Clostridium difficile-associated disease (CDAD). Intestinal microflora keeps C. difficile in the spore state and prevents colonization. Following antimicrobial treatment, the microflora is disrupted, and C. difficile spores germinate in the intestines. The resulting vegetative cells are believed to fill empty niches left by the depleted microbial community and establish infection. Thus, germination of C. difficile spores is the first required step in CDAD. Interestingly, C. difficile genes encode most known spore-specific protein necessary for germination, except for germination (Ger) receptors. Even though C. difficile Ger receptors have not been identified, taurocholate (a bile salt) and glycine (an amino acid) have been shown to be required for spore germination. Furthermore, chenodeoxycholate, another bile salt, can inhibit taurocholate-induced C. difficile spore germination. In the present study, we examined C. difficile spore germination kinetics to determine whether taurocholate acts as a specific germinant that activates unknown germination receptors or acts nonspecifically by disrupting spores' membranes. Kinetic analysis of C. difficile spore germination suggested the presence of distinct receptors for taurocholate and glycine. Furthermore, taurocholate, glycine, and chenodeoxycholate seem to bind to C. difficile spores through a complex mechanism, where both receptor homo- and heterocomplexes are formed. The kinetic data also point to an ordered sequential progression of binding where taurocholate must be recognized first before detection of glycine can take place. Finally, comparing calculated kinetic parameters with intestinal concentrations of the two germinants suggests a mechanism for the preferential germination of C. difficile spores in antibiotic-treated individuals.
艰难梭菌是一种产芽孢的细菌,可导致艰难梭菌相关性疾病(CDAD)。肠道微生物群使艰难梭菌保持在芽孢状态并防止定植。在进行抗生素治疗后,微生物群被破坏,艰难梭菌芽孢在肠道中发芽。据信,由此产生的营养细胞填补了因微生物群落耗竭而留下的空生态位,并建立感染。因此,艰难梭菌芽孢的发芽是 CDAD 的第一步。有趣的是,艰难梭菌基因编码了大多数已知的与发芽相关的芽孢特异性蛋白,除了发芽(Ger)受体。尽管尚未鉴定出艰难梭菌 Ger 受体,但已证明牛磺胆酸钠(一种胆汁盐)和甘氨酸(一种氨基酸)是芽孢发芽所必需的。此外,另一种胆汁盐鹅脱氧胆酸可以抑制牛磺胆酸钠诱导的艰难梭菌芽孢发芽。在本研究中,我们检查了艰难梭菌芽孢发芽动力学,以确定牛磺胆酸钠是否作为激活未知发芽受体的特异性发芽剂起作用,还是通过破坏芽孢的膜而起非特异性作用。艰难梭菌芽孢发芽的动力学分析表明存在牛磺胆酸钠和甘氨酸的独特受体。此外,牛磺胆酸钠、甘氨酸和鹅脱氧胆酸似乎通过一种复杂的机制结合到艰难梭菌芽孢上,其中形成了受体同型和异型复合物。动力学数据还表明,存在结合的有序顺序进展,其中必须首先识别牛磺胆酸钠,然后才能检测到甘氨酸的存在。最后,将计算出的动力学参数与两种启动子在肠道中的浓度进行比较,提示了一种在抗生素治疗个体中艰难梭菌芽孢优先发芽的机制。