Suppr超能文献

胆红素酰胺揭示了丙酸盐侧链在胆红素还原酶识别以及完整光敏色素组装和光转化中的作用。

Biliverdin amides reveal roles for propionate side chains in bilin reductase recognition and in holophytochrome assembly and photoconversion.

机构信息

Department of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, California 95616, USA.

出版信息

Biochemistry. 2010 Jul 27;49(29):6070-82. doi: 10.1021/bi100756x.

Abstract

Linear tetrapyrroles (bilins) perform important antioxidant and light-harvesting functions in cells from bacteria to humans. To explore the role of the propionate moieties in bilin metabolism, we report the semisynthesis of mono- and diamides of biliverdin IXalpha and those of its non-natural XIIIalpha isomer. Initially, these were examined as substrates of two types of NADPH-dependent biliverdin reductase, BVR and BvdR, and of the representative ferredoxin-dependent bilin reductase, phycocyanobilin:ferredoxin oxidoreductase (PcyA). Our studies indicate that the NADPH-dependent biliverdin reductases are less accommodating to amidation of the propionic acid side chains of biliverdin IXalpha than PcyA, which does not require free carboxylic acid side chains to yield its phytobilin product, phycocyanobilin. Bilin amides were also assembled with BV-type and phytobilin-type apophytochromes, demonstrating a role for the 8-propionate in the formation of the spectroscopically native P(r) dark states of these biliprotein photosensors. Neither ionizable propionate side chain proved to be essential to primary photoisomerization for both classes of phytochromes, but an unsubstituted 12-propionate was required for full photointerconversion of phytobilin-type phytochrome Cph1. Taken together, these studies provide insight into the roles of the ionizable propionate side chains in substrate discrimination by two bilin reductase families while further underscoring the mechanistic differences between the photoconversions of BV-type and phytobilin-type phytochromes.

摘要

线性四吡咯(胆红素)在从细菌到人类的细胞中发挥着重要的抗氧化和光捕获功能。为了探索丙酸侧链在胆红素代谢中的作用,我们报告了胆红素 IXα 的单酰胺和二酰胺以及其非天然 XIIIα 异构体的合成。最初,这些被用作两种类型的 NADPH 依赖性胆红素还原酶(BVR 和 BvdR)以及代表性的铁氧还蛋白依赖性胆红素还原酶,藻蓝蛋白:铁氧还蛋白氧化还原酶(PcyA)的底物进行了研究。我们的研究表明,与 PcyA 相比,NADPH 依赖性胆红素还原酶对胆红素 IXα 的丙酸侧链酰胺化的适应性较差,而 PcyA 不需要游离的羧酸侧链即可生成其植物胆红素产物藻蓝蛋白。胆红素酰胺也与 BV 型和植物胆红素型脱辅基藻胆蛋白组装,证明 8-丙酸在这些双蛋白光传感器的光谱天然 P(r) 暗态形成中起作用。对于这两类光敏色素,既不可电离的丙酸侧链都被证明对初级光异构化不是必需的,但对于植物胆红素型藻胆蛋白 Cph1 的完全光互变,需要未取代的 12-丙酸。总之,这些研究提供了对两种胆红素还原酶家族在底物识别中可电离丙酸侧链作用的深入了解,同时进一步强调了 BV 型和植物胆红素型光敏色素的光转化之间的机制差异。

相似文献

3
Structural insights into vinyl reduction regiospecificity of phycocyanobilin:ferredoxin oxidoreductase (PcyA).
J Biol Chem. 2010 Jan 8;285(2):1000-7. doi: 10.1074/jbc.M109.055632. Epub 2009 Nov 2.
4
Crystal structure of phytochromobilin synthase in complex with biliverdin IXα, a key enzyme in the biosynthesis of phytochrome.
J Biol Chem. 2020 Jan 17;295(3):771-782. doi: 10.1074/jbc.RA119.011431. Epub 2019 Dec 10.
7
Ferredoxin-dependent bilin reductases in eukaryotic algae: Ubiquity and diversity.
J Plant Physiol. 2017 Oct;217:57-67. doi: 10.1016/j.jplph.2017.05.022. Epub 2017 May 31.
8
Recombinant holophytochrome in Escherichia coli.
FEBS Lett. 2001 Nov 23;508(3):459-62. doi: 10.1016/s0014-5793(01)02988-x.
9
On the evolution of the plant phytochrome chromophore biosynthesis.
Plant Physiol. 2023 Aug 31;193(1):246-258. doi: 10.1093/plphys/kiad327.
10
Structural basis for hydration dynamics in radical stabilization of bilin reductase mutants.
Biochemistry. 2010 Jul 27;49(29):6206-18. doi: 10.1021/bi100728q.

引用本文的文献

1
Circular dichroism spectroscopy reveals multiple phytochrome photoproducts in equilibrium.
Photochem Photobiol Sci. 2025 Jul 18. doi: 10.1007/s43630-025-00763-2.
2
Conserved histidine and tyrosine determine spectral responses through the water network in Deinococcus radiodurans phytochrome.
Photochem Photobiol Sci. 2022 Nov;21(11):1975-1989. doi: 10.1007/s43630-022-00272-6. Epub 2022 Jul 29.
4
Spectral and photochemical diversity of tandem cysteine cyanobacterial phytochromes.
J Biol Chem. 2020 May 8;295(19):6754-6766. doi: 10.1074/jbc.RA120.012950. Epub 2020 Mar 17.
5
Rational Construction of Compact de Novo-Designed Biliverdin-Binding Proteins.
Biochemistry. 2018 Dec 11;57(49):6752-6756. doi: 10.1021/acs.biochem.8b01076. Epub 2018 Nov 28.
7
The phycocyanobilin chromophore of streptophyte algal phytochromes is synthesized by HY2.
New Phytol. 2017 May;214(3):1145-1157. doi: 10.1111/nph.14422. Epub 2017 Jan 20.
9
Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling.
J Biol Chem. 2013 Dec 13;288(50):35714-25. doi: 10.1074/jbc.M113.510461. Epub 2013 Oct 30.
10
Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4974-9. doi: 10.1073/pnas.1302909110. Epub 2013 Mar 11.

本文引用的文献

2
Phytochrome three-dimensional structures and functions.
Biochem Soc Trans. 2010 Apr;38(2):710-6. doi: 10.1042/BST0380710.
3
A brief history of phytochromes.
Chemphyschem. 2010 Apr 26;11(6):1172-80. doi: 10.1002/cphc.200900894.
4
Structural basis for the photoconversion of a phytochrome to the activated Pfr form.
Nature. 2010 Jan 14;463(7278):250-4. doi: 10.1038/nature08671.
6
Structural insights into vinyl reduction regiospecificity of phycocyanobilin:ferredoxin oxidoreductase (PcyA).
J Biol Chem. 2010 Jan 8;285(2):1000-7. doi: 10.1074/jbc.M109.055632. Epub 2009 Nov 2.
7
Spatiotemporal control of cell signalling using a light-switchable protein interaction.
Nature. 2009 Oct 15;461(7266):997-1001. doi: 10.1038/nature08446. Epub 2009 Sep 13.
8
Homogeneity of phytochrome Cph1 vibronic absorption revealed by resonance Raman intensity analysis.
J Am Chem Soc. 2009 Oct 7;131(39):13946-8. doi: 10.1021/ja905822m.
9
Conformational differences between the Pfr and Pr states in Pseudomonas aeruginosa bacteriophytochrome.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15639-44. doi: 10.1073/pnas.0902178106. Epub 2009 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验