Suppr超能文献

成人中的反向参照——基础算术

Inverse reference in adults-elementary arithmetic.

作者信息

Campbell Jamie I D, Alberts Nicole M

机构信息

Department of Psychology, University of Saskatchewan, Saskatchewan, Saskatoon, Canada.

出版信息

Can J Exp Psychol. 2010 Jun;64(2):77-85. doi: 10.1037/a0015720.

Abstract

Mauro, LeFevre, and Morris (2003) and Campbell (2008) manipulated problem format to assess university students' simple division and subtraction. Large division problems (dividend > 25; e.g., 42 / 6 = _) and large subtraction problems (minuend > 10; e.g., 13 - 6 = _), but not small problems, were solved more quickly when presented in inverse operation format (e.g., 6 x _ = 42 for division; 6 + _ = 13 for subtraction). They concluded that adults often solve large simple division and subtraction problems by reference to the inverse operation but rely on direct memory retrieval for smaller problems. Their findings, however, might have resulted from unequal practice or mixing of the inverse operations. Here, in Experiment 1 (division) and Experiment 2 (subtraction) normal and inverse formats received equal practice and only one operation was practiced (i.e., division or subtraction). Large divisions and subtractions were solved substantially faster when presented in inverse format, but there was also evidence that subtraction ties (e.g., 12 - 6 = 6) and small subtractions (minuend <or=10) benefited from inverse format. The results affirm that inverse reference is an important element in adult's performance of elementary subtraction and division.

摘要

毛罗、勒费夫尔和莫里斯(2003年)以及坎贝尔(2008年)通过操控问题形式来评估大学生的简单除法和减法运算能力。当以逆运算形式呈现时(例如,除法:6×_ = 42;减法:6 + _ = 13),大的除法问题(被除数>25;例如,42÷6 = _)和大的减法问题(被减数>10;例如,13 - 6 = _),而非小问题,能被更快地解决。他们得出结论,成年人在解决大的简单除法和减法问题时,常常借助逆运算,但在解决较小问题时则依赖直接的记忆提取。然而,他们的研究结果可能是由于逆运算练习不均衡或两种逆运算混合使用所致。在此,在实验1(除法)和实验2(减法)中,常规形式和逆运算形式的练习量相等,且只练习一种运算(即除法或减法)。当以逆运算形式呈现时,大的除法和减法问题的解决速度大幅提高,但也有证据表明减法等式(例如,12 - 6 = 6)以及小的减法问题(被减数≤10)也从逆运算形式中受益。这些结果证实,借助逆运算参考是成年人进行基本减法和除法运算时的一个重要因素。

相似文献

1
Inverse reference in adults-elementary arithmetic.
Can J Exp Psychol. 2010 Jun;64(2):77-85. doi: 10.1037/a0015720.
2
Inverse reference in subtraction performance: an analysis from arithmetic word problems.
Q J Exp Psychol (Hove). 2012;65(4):725-38. doi: 10.1080/17470218.2011.636824. Epub 2012 Feb 16.
3
Subtraction by addition.
Mem Cognit. 2008 Sep;36(6):1094-102. doi: 10.3758/MC.36.6.1094.
4
Using addition to solve large subtractions in the number domain up to 20.
Acta Psychol (Amst). 2010 Feb;133(2):163-9. doi: 10.1016/j.actpsy.2009.10.012. Epub 2009 Dec 5.
5
Operation-specific effects of numerical surface form on arithmetic strategy.
J Exp Psychol Learn Mem Cogn. 2009 Jul;35(4):999-1011. doi: 10.1037/a0015829.
6
Use of indirect addition in adults' mental subtraction in the number domain up to 1,000.
Br J Psychol. 2011 Aug;102(3):585-97. doi: 10.1111/j.2044-8295.2011.02019.x. Epub 2011 Mar 31.
7
Adults' use of subtraction by addition.
Acta Psychol (Amst). 2010 Nov;135(3):323-9. doi: 10.1016/j.actpsy.2010.08.007.
8
Negative numbers in simple arithmetic.
Q J Exp Psychol (Hove). 2010 Oct;63(10):1943-52. doi: 10.1080/17470210903564359. Epub 2010 Feb 11.
9
Stability and change in children's division strategies.
J Exp Child Psychol. 2006 Mar;93(3):224-38. doi: 10.1016/j.jecp.2005.09.002. Epub 2005 Oct 21.
10
Children's understanding of the arithmetic concepts of inversion and associativity.
J Exp Child Psychol. 2006 Aug;94(4):349-62. doi: 10.1016/j.jecp.2006.03.004. Epub 2006 May 3.

引用本文的文献

1
"Compacted" procedures for adults' simple addition: A review and critique of the evidence.
Psychon Bull Rev. 2018 Apr;25(2):739-753. doi: 10.3758/s13423-017-1328-2.
2
Specificity of learning through memory retrieval practice: the case of addition and subtraction.
Psychon Bull Rev. 2011 Dec;18(6):1148-55. doi: 10.3758/s13423-011-0151-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验