Suppr超能文献

使用球形 MDS 从随机投影估算层析成像中的视图参数。

Estimating view parameters from random projections for Tomography using spherical MDS.

机构信息

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.

出版信息

BMC Med Imaging. 2010 Jun 18;10:12. doi: 10.1186/1471-2342-10-12.

Abstract

BACKGROUND

During the past decade, the computed tomography has been successfully applied to various fields especially in medicine. The estimation of view angles for projections is necessary in some special applications of tomography, for example, the structuring of viruses using electron microscopy and the compensation of the patient's motion over long scanning period.

METHODS

This work introduces a novel approach, based on the spherical multidimensional scaling (sMDS), which transforms the problem of the angle estimation to a sphere constrained embedding problem. The proposed approach views each projection as a high dimensional vector with dimensionality equal to the number of sampling points on the projection. By using SMDS, then each projection vector is embedded onto a 1D sphere which parameterizes the projection with respect to view angles in a globally consistent manner. The parameterized projections are used for the final reconstruction of the image through the inverse radon transform. The entire reconstruction process is non-iterative and computationally efficient.

RESULTS

The effectiveness of the sMDS is verified with various experiments, including the evaluation of the reconstruction quality from different number of projections and resistance to different noise levels. The experimental results demonstrate the efficiency of the proposed method.

CONCLUSION

Our study provides an effective technique for the solution of 2D tomography with unknown acquisition view angles. The proposed method will be extended to three dimensional reconstructions in our future work. All materials, including source code and demos, are available on https://engineering.purdue.edu/PRECISE/SMDS.

摘要

背景

在过去的十年中,计算机断层扫描已成功应用于各个领域,尤其是医学领域。在某些特殊的层析应用中,例如使用电子显微镜对病毒进行结构分析以及补偿患者在长时间扫描过程中的运动,需要对投影的视角进行估计。

方法

这项工作提出了一种新的方法,基于球形多维尺度(sMDS),将角度估计问题转换为球体约束嵌入问题。该方法将每个投影视为一个具有与投影上采样点数相等维度的高维向量。通过使用 SMDS,将每个投影向量嵌入到一个 1D 球上,该球以全局一致的方式将投影参数化到视角。通过逆 Radon 变换,对参数化的投影进行最终的图像重建。整个重建过程是非迭代和计算高效的。

结果

通过各种实验验证了 sMDS 的有效性,包括从不同数量的投影评估重建质量和对不同噪声水平的抵抗能力。实验结果证明了该方法的有效性。

结论

我们的研究为解决未知采集视角的二维层析问题提供了一种有效的技术。我们将在未来的工作中将该方法扩展到三维重建。所有材料,包括源代码和演示,均可在 https://engineering.purdue.edu/PRECISE/SMDS 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c472/2898708/187ee1ed0692/1471-2342-10-12-6.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验