Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA.
Tree Physiol. 2010 Aug;30(8):1001-15. doi: 10.1093/treephys/tpq054. Epub 2010 Jun 21.
Anatomical and physiological acclimation to water stress of the tree hydraulic system involves trade-offs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth. Here, we study the role of variations in root and branch maximum hydraulic specific conductivity (k(s-max)) under high and low soil moisture in determining whole-tree hydraulic conductance (K(tree)) and in mediating stomatal control of gas exchange in four contrasting tree species growing under ambient and elevated CO₂ (CO₂(a) and CO₂(e)). We hypothesized that K(tree) would adjust to CO₂(e) through an increase in root and branch k(s-max) in response to anatomical adjustments. However, physiological changes observed under CO₂(e) were not clearly related to structural change in the xylem of any of the species. The only large effect of CO₂(e) occurred in branches of Liquidambar styraciflua L. and Cornus florida L. where an increase in k(s-max) and a decrease in xylem resistance to embolism (-P₅₀) were measured. Across species, embolism in roots explained the loss of K(tree) and therefore indirectly constituted a hydraulic signal involved in stomatal regulation and in the reduction of G(s-ref), the sap-flux-scaled mean canopy stomatal conductance at a reference vapour pressure deficit of 1 kPa. Across roots and branches, the increase in k(s-max) was associated with a decrease in -P₅₀, a consequence of structural acclimation such as larger conduits, lower pit resistance and lower wood density. Across species, treatment-induced changes in K(tree) translated to similar variation in G(s-ref). However, the relationship between G(s-ref) and K(tree) under CO₂(a) was steeper than under CO₂(e), indicating that CO₂(e) trees have lower G(s-ref) at a given K(tree) than CO₂(a) trees. Under high soil moisture, CO₂(e) greatly reduced G(s-ref). Under low soil moisture, CO₂(e) reduced G(s-ref) of only L. styraciflua and Ulmus alata. In some species, higher xylem dysfunction under CO₂(e) might impact tree performance in a future climate when increased evaporative demand could cause a greater loss of hydraulic function. The results contributed to our knowledge of the physiological and anatomical mechanisms underpinning the responses of tree species to drought and more generally to global change.
树木水力系统对水胁迫的解剖学和生理学适应涉及到维持气孔导度和丧失水力传导率之间的权衡,对光合作用有短期影响,对生存和生长有长期影响。在这里,我们研究了在高、低土壤水分条件下,根和枝最大水力比导率(k(s-max))的变化在决定整树水力传导率(K(tree))以及介导气体交换的气孔控制方面的作用,这四种对比树种在大气和升高的 CO₂(CO₂(a)和 CO₂(e))下生长。我们假设,通过响应解剖学调整,根和枝 k(s-max)的增加将使 K(tree)适应 CO₂(e)。然而,在任何一个物种的木质部中观察到的生理变化与结构变化都没有明显的关系。CO₂(e)唯一的大影响发生在 Liquidambar styraciflua L.和 Cornus florida L.的树枝中,在那里测量到 k(s-max)的增加和木质部栓塞阻力的降低(-P₅₀)。在物种间,根部的栓塞解释了 K(tree)的损失,因此间接构成了参与气孔调节和 G(s-ref)降低的水力信号,G(s-ref)是在 1 kPa 参考蒸气压亏缺下的平均冠层气孔导度的 sap-flux 标度值。在根和枝之间,k(s-max)的增加与 -P₅₀的降低有关,这是结构适应的结果,如更大的导管、更低的纹孔阻力和更低的木材密度。在物种间,处理诱导的 K(tree)变化转化为类似的 G(s-ref)变化。然而,在 CO₂(a)下,G(s-ref)与 K(tree)之间的关系比在 CO₂(e)下更陡峭,这表明 CO₂(e)树在给定的 K(tree)下具有比 CO₂(a)树更低的 G(s-ref)。在高土壤水分条件下,CO₂(e)大大降低了 G(s-ref)。在低土壤水分条件下,CO₂(e)仅降低了 L. styraciflua 和 Ulmus alata 的 G(s-ref)。在一些物种中,CO₂(e)下更高的木质部功能障碍可能会影响未来气候下树木的性能,因为增加的蒸发需求可能导致更大的水力功能丧失。这些结果有助于我们了解支撑树种对干旱和更普遍的全球变化的响应的生理和解剖学机制。