Departamento de Bioquímica, Biología Molecular y Celular, Centro de INvestigaciones Biomédicas en Red de Enfermedades Raras, Instituto Aragonés de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain.
Hum Mol Genet. 2010 Sep 1;19(17):3343-53. doi: 10.1093/hmg/ddq246. Epub 2010 Jun 21.
Many epidemiologic studies have associated human mitochondrial haplogroups to rare mitochondrial diseases like Leber's hereditary optic neuropathy or to more common age-linked disorders such as Parkinson's disease. However, cellular, biochemical and molecular-genetic evidence that is able to explain these associations is very scarce. The etiology of multifactorial diseases is very difficult to sort out because such diseases are due to a combination of genetic and environmental factors that individually only contribute in small part to the development of the illness. Thus, the haplogroup-defining mutations might behave as susceptibility factors, but they could have only a small effect on oxidative phosphorylation (OXPHOS) function. Moreover, these effects would be highly dependent on the 'context' in which the genetic variant is acting. To homogenize this 'context' for mitochondrial DNA (mtDNA) mutations, a cellular approach is available that involves the use of what is known as 'cybrids'. By using this model, we demonstrate that mtDNA and mtRNA levels, mitochondrial protein synthesis, cytochrome oxidase activity and amount, normalized oxygen consumption, mitochondrial inner membrane potential and growth capacity are different in cybrids from the haplogroup H when compared with those of the haplogroup Uk. Thus, these inherited basal differences in OXPHOS capacity can help to explain why some individuals more quickly reach the bioenergetic threshold below which tissue symptoms appear and progress toward multifactorial disorders. Hence, some population genetic variants in mtDNA contribute to the genetic component of complex disorders. The existence of mtDNA-based OXPHOS differences opens possibilities for the existence of a new field, mitochondrial pharmacogenomics. New sequence accession nos: HM103354-HM103363.
许多流行病学研究将人类线粒体单倍群与罕见的线粒体疾病(如莱伯遗传性视神经病变)或更为常见的与年龄相关的疾病(如帕金森病)联系起来。然而,能够解释这些关联的细胞、生化和分子遗传学证据非常稀缺。多因素疾病的病因很难理清,因为这些疾病是由遗传和环境因素共同作用的结果,而这些因素单独作用对疾病的发展只有很小的影响。因此,单倍群定义的突变可能表现为易感性因素,但它们对氧化磷酸化(OXPHOS)功能的影响可能很小。此外,这些影响将高度依赖于遗传变异发挥作用的“背景”。为了使线粒体 DNA(mtDNA)突变的“背景”均质化,有一种可用的细胞方法,涉及使用所谓的“细胞杂种”。通过使用这种模型,我们证明与 haplogroup Uk 相比,来自 haplogroup H 的细胞杂种中的 mtDNA 和 mtRNA 水平、线粒体蛋白合成、细胞色素氧化酶活性和量、标准化耗氧量、线粒体内膜电位和生长能力不同。因此,这些 OXPHOS 能力的遗传基础差异可以帮助解释为什么一些个体更快地达到组织症状出现和向多因素疾病发展的生物能量阈值。因此,mtDNA 中的一些群体遗传变异有助于复杂疾病的遗传成分。基于 mtDNA 的 OXPHOS 差异的存在为线粒体药物基因组学这一新领域的存在提供了可能性。新的序列访问号:HM103354-HM103363。