Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France.
J Phys Chem B. 2010 Jul 15;114(27):9072-83. doi: 10.1021/jp103348y.
In manuscript VI of the same series (J. Phys. Chem. B 2010, 114, 1077-1088), we reported the geometrical and vibrational features of lysine and arginine, that is, two alpha-amino acids (alpha-AAs) with positively charged side chains, at physiological conditions. Here, we report our results on histidine, one of the most biologically important alpha-AAs, whose side chain can be neutral or positively charged through a protonation-deprotonation process of the nitrogens involved in its cyclic side chain at pH values in the physiological range. We have recorded at room temperature Raman scattering and Fourier-transform infrared (FT-IR) absorption spectra from the aqueous solutions of the AA at pH values 4, 6.8, and 8. It has been shown that a Raman spectrum recorded at the intermediate pH (6.8) can be perfectly reconstituted by a linear combination of those observed at two extreme pH values (4 and 8), allowing determination of the populations of histidine with protonated and neutral side chains in solution. The above-mentioned experimental data were completed by the vibrational spectra recorded in D(2)O. On the other hand, quantum mechanical calculations at the DFT/B3LYP/6-31++G* allowed us to analyze the energetic, geometrical, and vibrational features of histidine. Through a discussion on the basis of experimental and theoretical results, we comment on (i) the potential energy surfaces of histidine placed in a polarizable dielectric continuum, providing molecular energy landscapes as a function of its side chain orientations around C(alpha)-C(beta) and C(beta)-C(gamma) bonds; (ii) the full geometry optimization of the low energy conformers placed in a solvent continuum or in the presence of n explicit water molecules (n = 3, 7); (iii) the energy value separating the two histidine forms with neutral side chains; (iv) the determination of the side chain pK(a) by means of Raman spectra; and (v) the assignment of the observed vibrational modes by means of the lowest-energy conformers of hydrated histidine.
在同一系列的论文 VI 中(J. Phys. Chem. B 2010, 114, 1077-1088),我们报道了赖氨酸和精氨酸的几何和振动特征,即两种带有正电荷侧链的α-氨基酸(α-AAs),在生理条件下。在这里,我们报告了组氨酸的研究结果,组氨酸是最重要的生物α-AAs 之一,其侧链可以通过涉及其环状侧链的氮的质子化-去质子化过程在生理范围内的 pH 值下变为中性或带正电荷。我们在室温下记录了 AA 在 pH 值为 4、6.8 和 8 的水溶液中的拉曼散射和傅里叶变换红外(FT-IR)吸收光谱。已经表明,在中间 pH 值(6.8)下记录的拉曼光谱可以通过在两个极端 pH 值(4 和 8)下观察到的光谱的线性组合完美地重建,从而确定溶液中带质子化和中性侧链的组氨酸的分布。上述实验数据由在 D(2)O 中记录的振动光谱补充。另一方面,在 DFT/B3LYP/6-31++G*水平上的量子力学计算使我们能够分析组氨酸的能量、几何和振动特征。通过基于实验和理论结果的讨论,我们评论了:(i)置于可极化介电连续体中的组氨酸的势能表面,提供了作为其侧链围绕 C(alpha)-C(beta)和 C(beta)-C(gamma)键取向的函数的分子能量景观;(ii)在溶剂连续体或存在 3 个、7 个);(iii)分离具有中性侧链的两种组氨酸形式的能量值;(iv)通过拉曼光谱确定侧链 pK(a);(v)通过水合组氨酸的最低能量构象确定观察到的振动模式的分配。