Dipartimento di Chimica G. Ciamician, Università di Bologna, Bologna, Italy.
Antioxid Redox Signal. 2011 Mar 15;14(6):1119-65. doi: 10.1089/ars.2010.3223. Epub 2010 Oct 29.
The design, synthesis, and operation of molecular-scale systems that exhibit controllable motions of their component parts is a topic of great interest in nanoscience and a fascinating challenge of nanotechnology. The development of this kind of species constitutes the premise to the construction of molecular machines and motors, which in a not-too-distant future could find applications in fields such as materials science, information technology, energy conversion, diagnostics, and medicine. In the past 25 years the development of supramolecular chemistry has enabled the construction of an interesting variety of artificial molecular machines. These devices operate via electronic and molecular rearrangements and, like the macroscopic counterparts, they need energy to work as well as signals to communicate with the operator. Here we outline the design principles at the basis of redox switching of molecular motion in artificial nanodevices. Redox processes, chemically, electrically, or photochemically induced, can indeed supply the energy to bring about molecular motions. Moreover, in the case of electrically and photochemically induced processes, electrochemical and photochemical techniques can be used to read the state of the system, and thus to control and monitor the operation of the device. Some selected examples are also reported to describe the most representative achievements in this research area.
设计、合成和操作分子尺度系统,使其组成部分能够进行可控运动,这是纳米科学领域非常关注的一个课题,也是纳米技术面临的一个迷人挑战。这类物种的发展构成了构建分子机器和马达的前提,而在不久的将来,这些分子机器和马达可能会在材料科学、信息技术、能量转换、诊断和医学等领域得到应用。在过去的 25 年里,超分子化学的发展使得构建了各种有趣的人工分子机器。这些设备通过电子和分子重排来工作,与宏观对应物一样,它们需要能量来工作,也需要信号来与操作者进行通信。在这里,我们概述了在人工纳米器件中分子运动的氧化还原开关设计原理。氧化还原过程,无论是化学、电还是光化学诱导的,都可以为分子运动提供能量。此外,在电和光化学诱导的情况下,可以使用电化学和光化学技术来读取系统的状态,从而控制和监测设备的操作。还报告了一些选定的示例,以描述该研究领域的最具代表性的成就。