Suppr超能文献

使用患病率指数来帮助解释和比较两个或多个观察者之间的一致性评分。

Using prevalence indices to aid interpretation and comparison of agreement ratings between two or more observers.

机构信息

The Royal Veterinary College, Department of Veterinary Clinical Science, North Mymms, Hertfordshire AL9 7TA, UK.

出版信息

Vet J. 2011 May;188(2):166-70. doi: 10.1016/j.tvjl.2010.04.021. Epub 2010 Jun 8.

Abstract

Veterinary clinical and epidemiological investigations demand observer reliability. Kappa (κ) statistics are often used to adjust the observed percentage agreement according to that expected by chance. In highly homogenous populations, κ ratings can be poor, despite percentage agreements being high, because the probability of chance agreement is also high. Veterinary researchers are often unsure how to interpret these ambiguous results. It is suggested that prevalence indices (PIs), reflecting the homogeneity of the sample, should be reported alongside percentage agreements and κ values. Here, a published PI calculation is extended, permitting extrapolation to situations involving three or more observers. A process is proposed for classifying results into those that do and do not attain clinically useful ratings, and those tested on excessively homogenous populations and which are therefore inconclusive. Pre-selection of balanced populations, or adjustment of scoring thresholds, can help reduce population homogeneity. Reporting PIs in observer reliability studies in veterinary science and other disciplines enables reliability to be interpreted usefully and allows results to be compared between studies.

摘要

兽医临床和流行病学调查需要观察者的可靠性。Kappa(κ)统计数据通常用于根据预期的机会调整观察到的百分比一致性。在高度同质的人群中,尽管百分比一致性很高,但 κ 评分可能很差,因为机会一致性的概率也很高。兽医研究人员往往不确定如何解释这些模棱两可的结果。建议报告百分比一致性和 κ 值的同时,还应报告反映样本同质性的患病率指数(PI)。在这里,扩展了已发表的 PI 计算方法,允许将其外推到涉及三个或更多观察者的情况。提出了一种将结果分类为达到和未达到临床有用评分的方法,以及对过于同质的人群进行测试且因此不确定的结果。选择平衡的人群进行预筛选,或调整评分阈值,可以帮助降低人群的同质性。在兽医科学和其他学科的观察者可靠性研究中报告 PI,可有助于对可靠性进行有用的解释,并允许在研究之间比较结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验