Suppr超能文献

丁香假单胞菌 ADP-ribosyltransferase 抑制拟南芥丝裂原活化蛋白激酶激酶。

A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases.

机构信息

College of Life Sciences, Beijing Normal University, Beijing 100875, China.

出版信息

Plant Cell. 2010 Jun;22(6):2033-44. doi: 10.1105/tpc.110.075697. Epub 2010 Jun 22.

Abstract

The successful recognition of pathogen-associated molecular patterns (PAMPs) as a danger signal is crucial for plants to fend off numerous potential pathogenic microbes. The signal is relayed through mitogen-activated protein kinase (MPK) cascades to activate defenses. Here, we show that the Pseudomonas syringae type III effector HopF2 can interact with Arabidopsis thaliana MAP KINASE KINASE5 (MKK5) and likely other MKKs to inhibit MPKs and PAMP-triggered immunity. Inhibition of PAMP-induced MPK phosphorylation was observed when HopF2 was delivered naturally by the bacterial type III secretion system. In addition, HopF2 Arg-71 and Asp-175 residues that are required for the interaction with MKK5 are also necessary for blocking MAP kinase activation, PAMP-triggered defenses, and virulence function in plants. HopF2 can inactivate MKK5 and ADP-ribosylate the C terminus of MKK5 in vitro. Arg-313 of MKK5 is required for ADP-ribosylation by HopF2 and MKK5 function in the plant cell. Together, these results indicate that MKKs are important targets of HopF2.

摘要

成功识别病原体相关分子模式 (PAMPs) 作为危险信号对植物抵御众多潜在病原微生物至关重要。该信号通过丝裂原活化蛋白激酶 (MPK) 级联传递以激活防御。在这里,我们表明,丁香假单胞菌 III 型效应物 HopF2 可以与拟南芥 MAP KINASE KINASE5 (MKK5) 相互作用,并可能与其他 MKK 相互作用以抑制 MPK 和 PAMP 触发的免疫。当 HopF2 通过细菌 III 型分泌系统自然递呈时,观察到对 PAMP 诱导的 MPK 磷酸化的抑制。此外,HopF2 与 MKK5 相互作用所需的 Arg-71 和 Asp-175 残基对于阻断 MAP 激酶激活、PAMP 触发的防御和植物中的毒力功能也是必需的。HopF2 可以在体外使 MKK5 失活并 ADP-核糖基化 MKK5 的 C 末端。MKK5 的 Arg-313 是 HopF2 的 ADP-核糖基化和 MKK5 在植物细胞中功能所必需的。总之,这些结果表明 MKKs 是 HopF2 的重要靶标。

相似文献

1
A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases.
Plant Cell. 2010 Jun;22(6):2033-44. doi: 10.1105/tpc.110.075697. Epub 2010 Jun 22.
2
The Pseudomonas syringae type III effector HopF2 suppresses Arabidopsis stomatal immunity.
PLoS One. 2014 Dec 11;9(12):e114921. doi: 10.1371/journal.pone.0114921. eCollection 2014.
3
The Pseudomonas syringae effector HopF2 suppresses Arabidopsis immunity by targeting BAK1.
Plant J. 2014 Jan;77(2):235-45. doi: 10.1111/tpj.12381. Epub 2013 Dec 9.
4
Bacterial effector HopF2 suppresses arabidopsis innate immunity at the plasma membrane.
Mol Plant Microbe Interact. 2011 May;24(5):585-93. doi: 10.1094/MPMI-07-10-0150.
5
The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2349-54. doi: 10.1073/pnas.0904739107. Epub 2010 Jan 19.
6
A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity.
Nature. 2007 May 17;447(7142):284-8. doi: 10.1038/nature05737. Epub 2007 Apr 22.
7
Association mechanism between Arabidopsis immune coreceptor BAK1 and Pseudomonas syringae effector HopF2.
Biochem Biophys Res Commun. 2024 May 28;710:149871. doi: 10.1016/j.bbrc.2024.149871. Epub 2024 Mar 31.
8
AvrRpm1 missense mutations weakly activate RPS2-mediated immune response in Arabidopsis thaliana.
PLoS One. 2012;7(8):e42633. doi: 10.1371/journal.pone.0042633. Epub 2012 Aug 6.
9
A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants.
Cell Host Microbe. 2007 May 17;1(3):175-85. doi: 10.1016/j.chom.2007.03.006.
10
Induction of γ-aminobutyric acid plays a positive role to Arabidopsis resistance against Pseudomonas syringae.
J Integr Plant Biol. 2020 Nov;62(11):1797-1812. doi: 10.1111/jipb.12974. Epub 2020 Jun 26.

引用本文的文献

1
The Role of Underw Effector PpEX in Suppressing Plant Defenses and Facilitating Pathogenicity.
Int J Mol Sci. 2025 Mar 29;26(7):3159. doi: 10.3390/ijms26073159.
4
type III effector RipAF1 mediates plant resistance signaling by ADP-ribosylation of host FBN1.
Hortic Res. 2024 Jun 12;11(8):uhae162. doi: 10.1093/hr/uhae162. eCollection 2024 Aug.
5
Structure and functional divergence of PIP peptide family revealed by functional studies on PIP1 and PIP2 in .
Front Plant Sci. 2023 Nov 24;14:1208549. doi: 10.3389/fpls.2023.1208549. eCollection 2023.
6
Small holes, big impact: Stomata in plant-pathogen-climate epic trifecta.
Mol Plant. 2024 Jan 1;17(1):26-49. doi: 10.1016/j.molp.2023.11.011. Epub 2023 Dec 1.
8
Suppression of NLR-mediated plant immune detection by bacterial pathogens.
J Exp Bot. 2023 Oct 13;74(19):6069-6088. doi: 10.1093/jxb/erad246.
9
10
Identification and Characterization of Novel Candidate Effector Proteins from .
J Fungi (Basel). 2023 May 15;9(5):574. doi: 10.3390/jof9050574.

本文引用的文献

2
Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4.
Cell Host Microbe. 2010 Feb 18;7(2):164-75. doi: 10.1016/j.chom.2010.01.009.
3
The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2349-54. doi: 10.1073/pnas.0904739107. Epub 2010 Jan 19.
4
Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro.
J Biol Chem. 2010 Jan 29;285(5):2996-3004. doi: 10.1074/jbc.M109.027540. Epub 2009 Dec 1.
5
The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity.
Mol Plant Microbe Interact. 2009 Sep;22(9):1069-80. doi: 10.1094/MPMI-22-9-1069.
8
AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants.
Curr Biol. 2009 Mar 10;19(5):423-9. doi: 10.1016/j.cub.2009.01.054. Epub 2009 Feb 26.
9
Emerging concepts in effector biology of plant-associated organisms.
Mol Plant Microbe Interact. 2009 Feb;22(2):115-22. doi: 10.1094/MPMI-22-2-0115.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验