Suppr超能文献

高尔基体磷酸肌醇-4-磷酸的空间调节对于酶的定位和糖基化保真度是必需的。

Spatial regulation of Golgi phosphatidylinositol-4-phosphate is required for enzyme localization and glycosylation fidelity.

机构信息

Division of Nephrology & Hypertension, Department of Medicine Oregon Health & Science University, Portland, OR 97239, USA.

出版信息

Traffic. 2010 Sep;11(9):1180-90. doi: 10.1111/j.1600-0854.2010.01092.x. Epub 2010 Jun 21.

Abstract

The enrichment of phosphatidylinositol-4-phosphate (PI(4)P) at the trans Golgi network (TGN) is instrumental for proper protein and lipid sorting, yet how the restricted distribution of PI(4)P is achieved remains unknown. Here, we show that lipid phosphatase Suppressor of actin mutations 1 (SAC1) is crucial for the spatial regulation of Golgi PI(4)P. Ultrastructural analysis revealed that SAC1 is predominantly located at cisternal Golgi membranes but is absent from the TGN, thus confining PI(4)P to the TGN. RNAi-mediated knockdown of SAC1 caused changes in Golgi morphology and mislocalization of Golgi enzymes. Enzymes involved in glycan processing such as mannosidase-II (Man-II) and N-acetylglucosamine transferase-I (GnT-I) redistributed to aberrant intracellular structures and to the cell surface in SAC1 knockdown cells. SAC1 depletion also induced a unique pattern of Golgi-specific defects in N-and O-linked glycosylation. These results indicate that SAC1 organizes PI(4)P distribution between the Golgi complex and the TGN, which is instrumental for resident enzyme partitioning and Golgi morphology.

摘要

磷脂酰肌醇-4-磷酸(PI(4)P)在反式高尔基体网络(TGN)中的富集对于蛋白质和脂质的正确分拣至关重要,但 PI(4)P 的限制分布是如何实现的仍不清楚。在这里,我们表明肌动蛋白突变抑制因子 1(SAC1)是高尔基体 PI(4)P 空间调节所必需的。超微结构分析显示,SAC1 主要位于顺面高尔基体膜上,但不存在于 TGN 中,从而将 PI(4)P 局限于 TGN。SAC1 的 RNAi 介导敲低导致高尔基体形态改变和高尔基体酶的定位错误。参与糖基化的酶,如甘露糖苷酶-II(Man-II)和 N-乙酰葡萄糖胺转移酶-I(GnT-I)重新分布到异常的细胞内结构和 SAC1 敲低细胞的细胞表面。SAC1 耗竭也诱导了 N-和 O-连接糖基化的独特的高尔基体特异性缺陷模式。这些结果表明,SAC1 在高尔基体复合物和 TGN 之间组织 PI(4)P 的分布,这对于驻留酶的分区和高尔基体形态至关重要。

相似文献

1
Spatial regulation of Golgi phosphatidylinositol-4-phosphate is required for enzyme localization and glycosylation fidelity.
Traffic. 2010 Sep;11(9):1180-90. doi: 10.1111/j.1600-0854.2010.01092.x. Epub 2010 Jun 21.
2
The activity of Sac1 across ER-TGN contact sites requires the four-phosphate-adaptor-protein-1.
J Cell Biol. 2019 Mar 4;218(3):783-797. doi: 10.1083/jcb.201812021. Epub 2019 Jan 18.
3
Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1.
J Cell Biol. 2008 Feb 25;180(4):803-12. doi: 10.1083/jcb.200708109.
5
Accumulation of PtdIns(4)P at the Golgi mediated by reversible oxidation of the PtdIns(4)P phosphatase Sac1 by HO.
Free Radic Biol Med. 2019 Jan;130:426-435. doi: 10.1016/j.freeradbiomed.2018.11.008. Epub 2018 Nov 16.
6
Inactivation of the PtdIns(4)P phosphatase Sac1 at the Golgi by HO produced via Ca-dependent Duox in EGF-stimulated cells.
Free Radic Biol Med. 2019 Feb 1;131:40-49. doi: 10.1016/j.freeradbiomed.2018.11.021. Epub 2018 Nov 23.
7
8
RAB30 regulates PI4KB (phosphatidylinositol 4-kinase beta)-dependent autophagy against group A Streptococcus.
Autophagy. 2019 Mar;15(3):466-477. doi: 10.1080/15548627.2018.1532260. Epub 2018 Oct 18.
9
The first transmembrane domain of lipid phosphatase SAC1 promotes Golgi localization.
PLoS One. 2013 Aug 1;8(8):e71112. doi: 10.1371/journal.pone.0071112. Print 2013.
10
Sac1-Vps74 structure reveals a mechanism to terminate phosphoinositide signaling in the Golgi apparatus.
J Cell Biol. 2014 Aug 18;206(4):485-91. doi: 10.1083/jcb.201404041. Epub 2014 Aug 11.

引用本文的文献

1
Control of Golgi- V-ATPase through Sac1-dependent co-regulation of PI(4)P and cholesterol.
Nat Commun. 2025 Aug 21;16(1):7808. doi: 10.1038/s41467-025-63125-7.
2
Orthogonal Targeting of SAC1 to Mitochondria Implicates ORP2 as a Major Player in PM PI4P Turnover.
Contact (Thousand Oaks). 2024 Feb 7;7:25152564241229272. doi: 10.1177/25152564241229272. eCollection 2024 Jan-Dec.
3
Orthogonal targeting of SAC1 to mitochondria implicates ORP2 as a major player in PM PI4P turnover.
bioRxiv. 2024 Jan 11:2023.08.28.555163. doi: 10.1101/2023.08.28.555163.
4
Phosphoinositides in New Spaces.
Cold Spring Harb Perspect Biol. 2023 Sep 1;15(9):a041406. doi: 10.1101/cshperspect.a041406.
5
6
The intracellular and plasma membrane pools of phosphatidylinositol-4-monophosphate control megakaryocyte maturation and proplatelet formation.
Res Pract Thromb Haemost. 2023 Apr 26;7(4):100169. doi: 10.1016/j.rpth.2023.100169. eCollection 2023 May.
7
Pathogen vacuole membrane contact sites - close encounters of the fifth kind.
Microlife. 2023 Apr 7;4:uqad018. doi: 10.1093/femsml/uqad018. eCollection 2023.
8
The C10orf76-PI4KB axis orchestrates CERT-mediated ceramide trafficking to the distal Golgi.
J Cell Biol. 2023 Jul 3;222(7). doi: 10.1083/jcb.202111069. Epub 2023 May 17.
9
Imaging of Intracellular and Plasma Membrane Pools of PI(4,5)P and PI4P in Human Platelets.
Life (Basel). 2021 Dec 1;11(12):1331. doi: 10.3390/life11121331.
10
GOLPH3 and GOLPH3L are broad-spectrum COPI adaptors for sorting into intra-Golgi transport vesicles.
J Cell Biol. 2021 Oct 4;220(10). doi: 10.1083/jcb.202106115. Epub 2021 Sep 2.

本文引用的文献

1
Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network.
J Cell Biol. 2009 May 18;185(4):601-12. doi: 10.1083/jcb.200901145. Epub 2009 May 11.
2
4
The Sac1 phosphoinositide phosphatase regulates Golgi membrane morphology and mitotic spindle organization in mammals.
Mol Biol Cell. 2008 Jul;19(7):3080-96. doi: 10.1091/mbc.e07-12-1290. Epub 2008 May 14.
5
Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1.
J Cell Biol. 2008 Feb 25;180(4):803-12. doi: 10.1083/jcb.200708109.
6
Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2.
Nat Genet. 2008 Jan;40(1):32-4. doi: 10.1038/ng.2007.45. Epub 2007 Dec 23.
7
Cryosectioning and immunolabeling.
Nat Protoc. 2007;2(10):2480-91. doi: 10.1038/nprot.2007.365.
8
Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis.
J Cell Biol. 2007 Oct 8;179(1):101-15. doi: 10.1083/jcb.200704091.
9
Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide.
Nature. 2007 Sep 6;449(7158):62-7. doi: 10.1038/nature06097. Epub 2007 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验