Department of Epileptology, University of Bonn Medical Center, 53105 Bonn, Germany.
J Neurosci. 2010 Jun 23;30(25):8489-501. doi: 10.1523/JNEUROSCI.1534-10.2010.
Neuronal excitability is critically determined by the properties of voltage-gated Na(+) currents. Fast transient Na(+) currents (I(NaT)) mediate the fast upstroke of action potentials, whereas low-voltage-activated persistent Na(+) currents (I(NaP)) contribute to subthreshold excitation. Na(+) channels are composed of a pore-forming alpha subunit and beta subunits, which modify the biophysical properties of alpha subunits. We have examined the idea that the presence of beta subunits also modifies the pharmacological properties of the Na(+) channel complex using mice lacking either the beta(1) (Scn1b) or beta(2) (Scn2b) subunit. Classical effects of the anticonvulsant carbamazepine (CBZ), such as the use-dependent reduction of I(NaT) and effects on I(NaT) voltage dependence of inactivation, were unaltered in mice lacking beta subunits. Surprisingly, CBZ induced a small but significant shift of the voltage dependence of activation of I(NaT) and I(NaP) to more hyperpolarized potentials. This novel CBZ effect on I(NaP) was strongly enhanced in Scn1b null mice, leading to a pronounced increase of I(NaP) within the subthreshold potential range, in particular at low CBZ concentrations of 10-30 microm. A combination of current-clamp and computational modeling studies revealed that this effect causes a complete loss of CBZ efficacy in reducing repetitive firing. Thus, beta subunits modify not only the biophysical but also the pharmacological properties of Na(+) channels, in particular with respect to I(NaP). Consequently, altered expression of beta subunits in other neurological disorders may cause altered neuronal sensitivity to drugs targeting Na(+) channels.
神经元兴奋性由电压门控 Na(+) 电流的特性决定。快速瞬态 Na(+) 电流 (I(NaT)) 介导动作电位的快速上升,而低电压激活的持续 Na(+) 电流 (I(NaP)) 有助于亚阈值兴奋。Na(+) 通道由孔形成的 α 亚基和 β 亚基组成,β 亚基调节 α 亚基的生物物理特性。我们使用缺乏β(1) (Scn1b) 或β(2) (Scn2b) 亚基的小鼠,检查了β 亚基存在是否也会改变 Na(+) 通道复合物的药理学特性的想法。经典的抗惊厥药卡马西平 (CBZ) 的作用,如对 I(NaT) 的使用依赖性减少和对 I(NaT) 失活电压依赖性的影响,在缺乏β 亚基的小鼠中没有改变。令人惊讶的是,CBZ 诱导 I(NaT) 和 I(NaP) 的激活电压依赖性向更超极化的电位发生小但显著的偏移。这种新型的 CBZ 对 I(NaP) 的作用在 Scn1b 缺失小鼠中得到了强烈增强,导致在亚阈值电位范围内,特别是在低 CBZ 浓度 10-30 μm 时,I(NaP) 明显增加。电流钳和计算建模研究的结合表明,这种作用导致 CBZ 降低重复放电的功效完全丧失。因此,β 亚基不仅改变 Na(+) 通道的生物物理特性,而且改变其药理学特性,特别是 I(NaP)。因此,其他神经疾病中 β 亚基表达的改变可能导致神经元对靶向 Na(+) 通道的药物敏感性改变。