Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163, USA.
J Neurophysiol. 2011 Dec;106(6):3019-34. doi: 10.1152/jn.00305.2011. Epub 2011 Aug 31.
GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (Na(V)) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA neurons, Na(V) channels in SNr GABA neurons have higher density, faster kinetics, and less cumulative inactivation. Our quantitative RT-PCR analysis on immunohistochemically identified nigral neurons indicated that mRNAs for pore-forming Na(V)1.1 and Na(V)1.6 subunits and regulatory Na(V)β1 and Na(v)β4 subunits are more abundant in SNr GABA neurons than SNc DA neurons. These α-subunits and β-subunits are key subunits for forming Na(V) channels conducting the transient Na(V) current (I(NaT)), persistent Na current (I(NaP)), and resurgent Na current (I(NaR)). Nucleated patch-clamp recordings showed that I(NaT) had a higher density, a steeper voltage-dependent activation, and a faster deactivation in SNr GABA neurons than in SNc DA neurons. I(NaT) also recovered more quickly from inactivation and had less cumulative inactivation in SNr GABA neurons than in SNc DA neurons. Furthermore, compared with nigral DA neurons, SNr GABA neurons had a larger I(NaR) and I(NaP). Blockade of I(NaP) induced a larger hyperpolarization in SNr GABA neurons than in SNc DA neurons. Taken together, these results indicate that Na(V) channels expressed in fast-spiking SNr GABA neurons and slow-spiking SNc DA neurons are tailored to support their different spiking capabilities.
黑质网状部的 GABA 投射神经元(GABA 神经元)和黑质致密部的多巴胺投射神经元(DA 神经元)具有明显不同的放电特性。SNc DA 神经元发出低频、长时程的尖峰,而 SNr GABA 神经元发出高频、短时程的尖峰。由于电压激活的钠(Na(V))通道对于尖峰产生至关重要,因此不同的放电特性提出了这样的可能性,与 DA 神经元相比,SNr GABA 神经元中的 Na(V)通道具有更高的密度、更快的动力学和更少的累积失活。我们对免疫组织化学鉴定的黑质神经元进行的定量 RT-PCR 分析表明,孔形成 Na(V)1.1 和 Na(V)1.6 亚基以及调节 Na(V)β1 和 Na(v)β4 亚基的 mRNA 在 SNr GABA 神经元中比在 SNc DA 神经元中更为丰富。这些 α 亚基和 β 亚基是形成 Na(V)通道的关键亚基,该通道传导瞬时 Na(V)电流(I(NaT))、持续 Na 电流(I(NaP))和再生 Na 电流(I(NaR))。核穴 patch-clamp 记录显示,I(NaT)在 SNr GABA 神经元中的密度更高,电压依赖性激活更陡峭,失活更快,并且在 SNr GABA 神经元中的失活累积比在 SNc DA 神经元中更少。此外,与黑质 DA 神经元相比,SNr GABA 神经元具有更大的 I(NaR)和 I(NaP)。I(NaP)阻断在 SNr GABA 神经元中引起的超极化比在 SNc DA 神经元中更大。总之,这些结果表明,快速放电的 SNr GABA 神经元和慢速放电的 SNc DA 神经元中表达的 Na(V)通道是为了支持它们不同的放电能力而量身定制的。