Suppr超能文献

苯巴比妥和 NKCC1 抑制剂布美他尼对匹罗卡品颞叶癫痫模型的疾病修饰作用。

Disease-modifying effects of phenobarbital and the NKCC1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy.

机构信息

Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany.

出版信息

J Neurosci. 2010 Jun 23;30(25):8602-12. doi: 10.1523/JNEUROSCI.0633-10.2010.

Abstract

Accumulating evidence suggests that changes in neuronal chloride homeostasis may be involved in the mechanisms by which brain insults induce the development of epilepsy. A variety of brain insults, including status epilepticus (SE), lead to changes in the expression of the cation-chloride cotransporters KCC2 and NKCC1, resulting in intracellular chloride accumulation and reappearance of immature, depolarizing synaptic responses to GABA(A) receptor activation, which may critically contribute to the neuronal hyperexcitability underlying epileptogenesis. In the present study, it was evaluated whether prolonged administration of the selective NKCC1 inhibitor, bumetanide, after a pilocarpine-induced SE modifies the development of epilepsy in adult female rats. The antiepileptic drug phenobarbital, either alone or in combination, was used for comparison. Based on pharmacokinetic studies with bumetanide, which showed extremely rapid elimination and low brain penetration of this drug in rats, bumetanide was administered systemically with different dosing protocols, including continuous intravenous infusion. As shown by immunohistochemistry, neuronal NKCC1 expression was markedly upregulated shortly after SE. Prophylactic treatment with phenobarbital after SE reduced the number of rats developing spontaneous seizures and decreased seizure frequency, indicating a disease-modifying effect. Bumetanide did not exert any significant effects on development of spontaneous seizures nor did it enhance the effects of phenobarbital. However, combined treatment with both drugs counteracted several of the behavioral consequences of SE, which was not observed with single drug treatment. These data do not indicate that bumetanide can prevent epilepsy after SE, but the disease-modifying effect of this drug warrants further studies with more lipophilic prodrugs of bumetanide.

摘要

越来越多的证据表明,神经元氯离子稳态的变化可能与脑损伤诱导癫痫发生的机制有关。多种脑损伤,包括癫痫持续状态(SE),导致阳离子-氯离子共转运体 KCC2 和 NKCC1 的表达发生变化,导致细胞内氯离子积累和 GABA(A)受体激活后不成熟的去极化突触反应重新出现,这可能对癫痫发生的神经元过度兴奋起关键作用。在本研究中,评估了在匹罗卡品诱导的 SE 后长时间给予选择性 NKCC1 抑制剂布美他尼是否会改变成年雌性大鼠癫痫的发生。使用抗癫痫药物苯巴比妥进行了比较,无论是单独使用还是联合使用。基于布美他尼的药代动力学研究,该研究表明这种药物在大鼠体内极其快速消除且脑穿透性低,因此采用不同的给药方案,包括连续静脉输注,对布美他尼进行了系统给药。如免疫组织化学所示,SE 后不久神经元 NKCC1 表达明显上调。SE 后预防性给予苯巴比妥可减少自发发作大鼠的数量并降低发作频率,表明具有疾病修饰作用。布美他尼对自发发作的发展没有任何显著影响,也没有增强苯巴比妥的作用。然而,两种药物的联合治疗可抵消 SE 的多种行为后果,而单独使用一种药物则没有观察到这种作用。这些数据表明布美他尼不能预防 SE 后的癫痫,但该药的疾病修饰作用值得进一步研究,包括更亲脂性的布美他尼前药。

相似文献

2
Bumetanide is not capable of terminating status epilepticus but enhances phenobarbital efficacy in different rat models.
Eur J Pharmacol. 2015 Jan 5;746:78-88. doi: 10.1016/j.ejphar.2014.10.056. Epub 2014 Nov 11.
4
The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy.
Exp Neurol. 2010 Jul;224(1):219-33. doi: 10.1016/j.expneurol.2010.03.014. Epub 2010 Mar 29.
5
Bumetanide enhances phenobarbital efficacy in a neonatal seizure model.
Ann Neurol. 2008 Feb;63(2):222-35. doi: 10.1002/ana.21229.
6
BDNF modifies hippocampal KCC2 and NKCC1 expression in a temporal lobe epilepsy model.
Acta Neurobiol Exp (Wars). 2014;74(3):276-87. doi: 10.55782/ane-2014-1993.
7
Effect of Co-administration of Bumetanide and Phenobarbital on Seizure Attacks in Temporal Lobe Epilepsy.
Basic Clin Neurosci. 2018 Nov-Dec;9(6):408-416. doi: 10.32598/bcn.9.6.408. Epub 2018 Nov 1.
9
NKCC1 transporter facilitates seizures in the developing brain.
Nat Med. 2005 Nov;11(11):1205-13. doi: 10.1038/nm1301. Epub 2005 Oct 9.
10
Functional characterization of novel bumetanide derivatives for epilepsy treatment.
Neuropharmacology. 2020 Jan 1;162:107754. doi: 10.1016/j.neuropharm.2019.107754. Epub 2019 Aug 30.

引用本文的文献

1
An Evaluation of Cation-Chloride Cotransporters NKCC1 and KCC2 in Carbamazepine-Resistant Rats.
Int J Mol Sci. 2025 May 16;26(10):4764. doi: 10.3390/ijms26104764.
3
The role of family of cation-chloride cotransporters and drug discovery methodologies.
J Pharm Anal. 2023 Dec;13(12):1471-1495. doi: 10.1016/j.jpha.2023.09.002. Epub 2023 Sep 9.
4
Unilateral optogenetic kindling of hippocampus leads to more severe impairments of the inhibitory signaling in the contralateral hippocampus.
Front Mol Neurosci. 2023 Oct 24;16:1268311. doi: 10.3389/fnmol.2023.1268311. eCollection 2023.
6
Developmental changes in brain activity of heterozygous knockout rats.
Front Neurol. 2023 Mar 14;14:1125089. doi: 10.3389/fneur.2023.1125089. eCollection 2023.
7
Scoping review of disease-modifying effect of drugs in experimental epilepsy.
Front Neurol. 2023 Feb 23;14:1097473. doi: 10.3389/fneur.2023.1097473. eCollection 2023.
8
Bumetanide for neonatal seizures: No light in the pharmacokinetic/dynamic tunnel.
Epilepsia. 2022 Jul;63(7):1868-1873. doi: 10.1111/epi.17279. Epub 2022 May 26.
9
Selected Molecular Targets for Antiepileptogenesis.
Int J Mol Sci. 2021 Sep 8;22(18):9737. doi: 10.3390/ijms22189737.
10
Roles of Key Ion Channels and Transport Proteins in Age-Related Hearing Loss.
Int J Mol Sci. 2021 Jun 7;22(11):6158. doi: 10.3390/ijms22116158.

本文引用的文献

1
Development of epileptiform excitability in the deep entorhinal cortex after status epilepticus.
Eur J Neurosci. 2009 Aug;30(4):611-24. doi: 10.1111/j.1460-9568.2009.06863.x. Epub 2009 Aug 10.
2
Pursuing paradoxical proconvulsant prophylaxis for epileptogenesis.
Epilepsia. 2009 Jul;50(7):1657-69. doi: 10.1111/j.1528-1167.2009.02173.x. Epub 2009 Jul 1.
3
Curing epilepsy: progress and future directions.
Epilepsy Behav. 2009 Mar;14(3):438-45. doi: 10.1016/j.yebeh.2009.02.036.
4
Cation-chloride cotransporters and neuronal function.
Neuron. 2009 Mar 26;61(6):820-38. doi: 10.1016/j.neuron.2009.03.003.
5
Bumetanide inhibits rapid kindling in neonatal rats.
Epilepsia. 2009 Sep;50(9):2117-22. doi: 10.1111/j.1528-1167.2009.02048.x. Epub 2009 Feb 26.
6
Posttraumatic epilepsy: the challenge of translating discoveries in the laboratory to pathways to a cure.
Epilepsia. 2009 Feb;50 Suppl 2:41-5. doi: 10.1111/j.1528-1167.2008.02009.x.
7
Complex time-dependent alterations in the brain expression of different drug efflux transporter genes after status epilepticus.
Epilepsia. 2009 Apr;50(4):887-97. doi: 10.1111/j.1528-1167.2008.01916.x. Epub 2008 Dec 4.
8
Molecular and cellular basis of epileptogenesis in symptomatic epilepsy.
Epilepsy Behav. 2009 Jan;14 Suppl 1:16-25. doi: 10.1016/j.yebeh.2008.09.023. Epub 2008 Oct 19.
9
Resistance to antiepileptic drugs and expression of P-glycoprotein in two rat models of status epilepticus.
Epilepsy Res. 2008 Nov;82(1):70-85. doi: 10.1016/j.eplepsyres.2008.07.007. Epub 2008 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验