Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
J Comp Neurol. 2010 Aug 15;518(16):3254-71. doi: 10.1002/cne.22398.
With the exception of humans, the somata of type I spiral ganglion neurons (SGNs) of most mammalian species are heavily myelinated. In an earlier study, we used Ly5.1 congenic mice as transplant recipients to investigate the role of hematopoietic stem cells in the adult mouse inner ear. An unanticipated finding was that a large percentage of the SGNs in this strain were unmyelinated. Further characterization of the auditory phenotype of young adult Ly5.1 mice in the present study revealed several unusual characteristics, including 1) large aggregates of unmyelinated SGNs in the apical and middle turns, 2) symmetrical junction-like contacts between the unmyelinated neurons, 3) abnormal expression patterns for CNPase and connexin 29 in the SGN clusters, 4) reduced SGN density in the basal cochlea without a corresponding loss of sensory hair cells, 5) significantly delayed auditory brainstem response (ABR) wave I latencies at low and middle frequencies compared with control mice with similar ABR threshold, and 6) elevated ABR thresholds and deceased wave I amplitudes at high frequencies. Taken together, these data suggest a defect in Schwann cells that leads to incomplete myelinization of SGNs during cochlear development. The Ly5.1 mouse strain appears to be the only rodent model so far identified with a high degree of the "human-like" feature of unmyelinated SGNs that aggregate into neural clusters. Thus, this strain may provide a suitable animal platform for modeling human auditory information processing such as synchronous neural activity and other auditory response properties.
除人类外,大多数哺乳动物物种的 I 型螺旋神经节神经元(SGN)的胞体都有大量髓鞘。在早期的一项研究中,我们使用 Ly5.1 同基因小鼠作为移植受体,研究造血干细胞在成年小鼠内耳中的作用。一个意外的发现是,该品系中很大比例的 SGN 是无髓鞘的。本研究进一步对年轻成年 Ly5.1 小鼠的听觉表型进行了特征描述,发现了几个异常特征,包括 1)在顶部和中部旋转中有大量未髓鞘化的 SGN 聚集,2)未髓鞘化神经元之间存在对称的连接样接触,3)CNPase 和连接蛋白 29 在 SGN 簇中的异常表达模式,4)在基底耳蜗中 SGN 密度降低,但感觉毛细胞没有相应丢失,5)与具有相似 ABR 阈值的对照小鼠相比,低频和中频的 ABR 波 I 潜伏期明显延迟,6)高频时 ABR 阈值升高,波 I 幅度降低。综上所述,这些数据表明 Schwann 细胞存在缺陷,导致耳蜗发育过程中 SGN 的髓鞘形成不完全。Ly5.1 小鼠品系似乎是迄今为止唯一被确定具有大量未髓鞘化 SGN 聚集形成神经簇的“人类样”特征的啮齿动物模型。因此,该品系可能为模拟人类听觉信息处理提供合适的动物平台,如同步神经活动和其他听觉反应特性。