Gubbels Samuel P, Woessner David W, Mitchell John C, Ricci Anthony J, Brigande John V
Department of Otolaryngology, Oregon Hearing Research Center, Portland, Oregon 97239, USA.
Nature. 2008 Sep 25;455(7212):537-41. doi: 10.1038/nature07265. Epub 2008 Aug 27.
Sensory hair cells in the mammalian cochlea convert mechanical stimuli into electrical impulses that subserve audition. Loss of hair cells and their innervating neurons is the most frequent cause of hearing impairment. Atonal homologue 1 (encoded by Atoh1, also known as Math1) is a basic helix-loop-helix transcription factor required for hair-cell development, and its misexpression in vitro and in vivo generates hair-cell-like cells. Atoh1-based gene therapy to ameliorate auditory and vestibular dysfunction has been proposed. However, the biophysical properties of putative hair cells induced by Atoh1 misexpression have not been characterized. Here we show that in utero gene transfer of Atoh1 produces functional supernumerary hair cells in the mouse cochlea. The induced hair cells display stereociliary bundles, attract neuronal processes and express the ribbon synapse marker carboxy-terminal binding protein 2 (refs 12,13). Moreover, the hair cells are capable of mechanoelectrical transduction and show basolateral conductances with age-appropriate specializations. Our results demonstrate that manipulation of cell fate by transcription factor misexpression produces functional sensory cells in the postnatal mammalian cochlea. We expect that our in utero gene transfer paradigm will enable the design and validation of gene therapies to ameliorate hearing loss in mouse models of human deafness.
哺乳动物耳蜗中的感觉毛细胞将机械刺激转化为电脉冲,从而实现听觉功能。毛细胞及其支配神经元的丧失是听力障碍最常见的原因。无调性同源物1(由Atoh1编码,也称为Math1)是毛细胞发育所需的一种基本螺旋-环-螺旋转录因子,其在体外和体内的错误表达可产生毛细胞样细胞。有人提出基于Atoh1的基因疗法来改善听觉和前庭功能障碍。然而,由Atoh1错误表达诱导的假定毛细胞的生物物理特性尚未得到表征。在这里,我们表明,子宫内基因转移Atoh1可在小鼠耳蜗中产生功能性的多余毛细胞。诱导产生的毛细胞表现出静纤毛束,吸引神经元突起,并表达带状突触标记物羧基末端结合蛋白2(参考文献12,13)。此外,这些毛细胞能够进行机械电转导,并随着年龄增长表现出具有适当特化的基底外侧电导。我们的结果表明,通过转录因子错误表达来操纵细胞命运可在出生后的哺乳动物耳蜗中产生功能性感觉细胞。我们期望我们的子宫内基因转移模式将能够设计和验证基因疗法,以改善人类耳聋小鼠模型中的听力损失。