Suppr超能文献

利用扩散加权磁共振成像预测和监测癌症治疗反应。

Predicting and monitoring cancer treatment response with diffusion-weighted MRI.

机构信息

Department of Radiology, University Hospital of Bern, Inselspital, Bern, Switzerland.

出版信息

J Magn Reson Imaging. 2010 Jul;32(1):2-16. doi: 10.1002/jmri.22167.

Abstract

An imaging biomarker that would provide for an early quantitative metric of clinical treatment response in cancer patients would provide for a paradigm shift in cancer care. Currently, nonimage based clinical outcome metrics include morphology, clinical, and laboratory parameters, however, these are obtained relatively late following treatment. Diffusion-weighted MRI (DW-MRI) holds promise for use as a cancer treatment response biomarker as it is sensitive to macromolecular and microstructural changes which can occur at the cellular level earlier than anatomical changes during therapy. Studies have shown that successful treatment of many tumor types can be detected using DW-MRI as an early increase in the apparent diffusion coefficient (ADC) values. Additionally, low pretreatment ADC values of various tumors are often predictive of better outcome. These capabilities, once validated, could provide for an important opportunity to individualize therapy thereby minimizing unnecessary systemic toxicity associated with ineffective therapies with the additional advantage of improving overall patient health care and associated costs. In this report, we provide a brief technical overview of DW-MRI acquisition protocols, quantitative image analysis approaches and review studies which have implemented DW-MRI for the purpose of early prediction of cancer treatment response.

摘要

一种能够为癌症患者的临床治疗反应提供早期定量指标的成像生物标志物,将为癌症治疗带来范式转变。目前,非基于图像的临床结果指标包括形态学、临床和实验室参数,但这些参数是在治疗后相对较晚获得的。扩散加权磁共振成像(DW-MRI)有望作为癌症治疗反应生物标志物使用,因为它对细胞水平上治疗过程中比解剖学变化更早发生的大分子和微结构变化敏感。研究表明,许多肿瘤类型的成功治疗可以通过 DW-MRI 检测到,因为表观扩散系数(ADC)值早期增加。此外,各种肿瘤的低预处理 ADC 值通常预示着更好的预后。一旦得到验证,这些功能将为实现个体化治疗提供重要机会,从而最大限度地减少与无效治疗相关的不必要的全身毒性,同时还具有改善整体患者医疗保健和相关成本的额外优势。在本报告中,我们简要介绍了 DW-MRI 采集协议的技术概述、定量图像分析方法,并回顾了旨在早期预测癌症治疗反应的 DW-MRI 实施研究。

相似文献

1
Predicting and monitoring cancer treatment response with diffusion-weighted MRI.
J Magn Reson Imaging. 2010 Jul;32(1):2-16. doi: 10.1002/jmri.22167.
2
Diffusion MRI in early cancer therapeutic response assessment.
NMR Biomed. 2017 Mar;30(3). doi: 10.1002/nbm.3458. Epub 2016 Jan 15.
4
Multi-site clinical evaluation of DW-MRI as a treatment response metric for breast cancer patients undergoing neoadjuvant chemotherapy.
PLoS One. 2015 Mar 27;10(3):e0122151. doi: 10.1371/journal.pone.0122151. eCollection 2015.
5
Therapy response with diffusion MRI: an update.
Cancer Imaging. 2012 Sep 28;12(2):395-402. doi: 10.1102/1470-7330.2012.9047.
10
Clinical validation of a prognostic preclinical magnetic resonance imaging biomarker for radiotherapy outcome in head-and-neck cancer.
Radiother Oncol. 2025 Mar;204:110702. doi: 10.1016/j.radonc.2024.110702. Epub 2024 Dec 27.

引用本文的文献

1
Detecting glioblastoma infiltration beyond conventional imaging tumour margins using MTE-NODDI.
Imaging Neurosci (Camb). 2025 Feb 18;3. doi: 10.1162/imag_a_00472. eCollection 2025.
2
Artificial intelligence for chimeric antigen receptor-based therapies: a comprehensive review of current applications and future perspectives.
Ther Adv Vaccines Immunother. 2024 Dec 16;12:25151355241305856. doi: 10.1177/25151355241305856. eCollection 2024.
4
Validation of echo planar imaging based diffusion-weighted magnetic resonance imaging on a 0.35 T MR-Linac.
Phys Imaging Radiat Oncol. 2024 Apr 20;30:100579. doi: 10.1016/j.phro.2024.100579. eCollection 2024 Apr.
5
Apparent diffusion coefficient values predict response to brachytherapy in bulky cervical cancer.
Radiat Oncol. 2024 Mar 13;19(1):35. doi: 10.1186/s13014-024-02425-6.
6
An open relaxation-diffusion MRI dataset in neurosurgical studies.
Sci Data. 2024 Feb 7;11(1):177. doi: 10.1038/s41597-024-03013-9.
7
Preoperative chemotherapy, radiotherapy and surgical decision-making in patients with borderline resectable and locally advanced pancreatic cancer.
Nat Rev Gastroenterol Hepatol. 2024 Feb;21(2):101-124. doi: 10.1038/s41575-023-00856-2. Epub 2023 Nov 30.
9
Response Assessment of Primary Liver Tumors to Novel Therapies: an Imaging Perspective.
J Gastrointest Surg. 2023 Oct;27(10):2245-2259. doi: 10.1007/s11605-023-05762-1. Epub 2023 Jul 18.

本文引用的文献

7
From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors.
J Nucl Med. 2009 May;50 Suppl 1(Suppl 1):122S-50S. doi: 10.2967/jnumed.108.057307.
9
The parametric response map is an imaging biomarker for early cancer treatment outcome.
Nat Med. 2009 May;15(5):572-6. doi: 10.1038/nm.1919. Epub 2009 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验