Suppr超能文献

基于嵌合抗原受体疗法的人工智能:当前应用及未来展望的全面综述

Artificial intelligence for chimeric antigen receptor-based therapies: a comprehensive review of current applications and future perspectives.

作者信息

Shahzadi Muqadas, Rafique Hamad, Waheed Ahmad, Naz Hina, Waheed Atifa, Zokirova Feruza Ravshanovna, Khan Humera

机构信息

Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, Pakistan.

College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China.

出版信息

Ther Adv Vaccines Immunother. 2024 Dec 16;12:25151355241305856. doi: 10.1177/25151355241305856. eCollection 2024.

Abstract

Using artificial intelligence (AI) to enhance chimeric antigen receptor (CAR)-based therapies' design, production, and delivery is a novel and promising approach. This review provides an overview of the current applications and challenges of AI for CAR-based therapies and suggests some directions for future research and development. This paper examines some of the recent advances of AI for CAR-based therapies, for example, using deep learning (DL) to design CARs that target multiple antigens and avoid antigen escape; using natural language processing to extract relevant information from clinical reports and literature; using computer vision to analyze the morphology and phenotype of CAR cells; using reinforcement learning to optimize the dose and schedule of CAR infusion; and using AI to predict the efficacy and toxicity of CAR-based therapies. These applications demonstrate the potential of AI to improve the quality and efficiency of CAR-based therapies and to provide personalized and precise treatments for cancer patients. However, there are also some challenges and limitations of using AI for CAR-based therapies, for example, the lack of high-quality and standardized data; the need for validation and verification of AI models; the risk of bias and error in AI outputs; the ethical, legal, and social issues of using AI for health care; and the possible impact of AI on the human role and responsibility in cancer immunotherapy. It is important to establish a multidisciplinary collaboration among researchers, clinicians, regulators, and patients to address these challenges and to ensure the safe and responsible use of AI for CAR-based therapies.

摘要

利用人工智能(AI)来改进基于嵌合抗原受体(CAR)的疗法的设计、生产和递送是一种新颖且有前景的方法。本综述概述了AI在基于CAR的疗法中的当前应用和挑战,并提出了一些未来研发的方向。本文探讨了AI在基于CAR的疗法方面的一些最新进展,例如,使用深度学习(DL)设计靶向多种抗原并避免抗原逃逸的CAR;使用自然语言处理从临床报告和文献中提取相关信息;使用计算机视觉分析CAR细胞的形态和表型;使用强化学习优化CAR输注的剂量和时间表;以及使用AI预测基于CAR的疗法的疗效和毒性。这些应用展示了AI在提高基于CAR的疗法的质量和效率以及为癌症患者提供个性化精准治疗方面的潜力。然而,将AI用于基于CAR的疗法也存在一些挑战和局限,例如缺乏高质量和标准化的数据;需要对AI模型进行验证和核查;AI输出中存在偏差和错误的风险;将AI用于医疗保健的伦理、法律和社会问题;以及AI对癌症免疫治疗中人类角色和责任的可能影响。研究人员、临床医生、监管机构和患者之间建立多学科合作以应对这些挑战并确保安全且负责任地将AI用于基于CAR的疗法非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f70c/11650588/441beb28d501/10.1177_25151355241305856-img2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验