Laboratory of Physical Chemistry, ETH Zürich, ETH Hönggerberg, HCI, CH-8093 Zürich, Switzerland.
Carbohydr Res. 2010 Aug 16;345(12):1781-801. doi: 10.1016/j.carres.2010.05.026. Epub 2010 Jun 1.
Explicit-solvent molecular dynamics (MD) simulations of the 11 glucose-based disaccharides in water at 300K and 1bar are reported. The simulations were carried out with the GROMOS 45A4 force-field and the sampling along the glycosidic dihedral angles phi and psi was artificially enhanced using the local elevation umbrella sampling (LEUS) method. The trajectories are analyzed in terms of free-energy maps, stable and metastable conformational states (relative free energies and estimated transition timescales), intramolecular H-bonds, single molecule configurational entropies, and agreement with experimental data. All disaccharides considered are found to be characterized either by a single stable (overwhelmingly populated) state ((1-->n)-linked disaccharides with n=1, 2, 3, or 4) or by two stable (comparably populated and differing in the third glycosidic dihedral angle omega ; gg or gt) states with a low interconversion barrier ((1-->6)-linked disaccharides). Metastable (anti-phi or anti-psi) states are also identified with relative free energies in the range of 8-22 kJ mol(-1). The 11 compounds can be classified into four families: (i) the alpha(1-->1)alpha-linked disaccharide trehalose (axial-axial linkage) presents no metastable state, the lowest configurational entropy, and no intramolecular H-bonds; (ii) the four alpha(1-->n)-linked disaccharides (n=1, 2, 3, or 4; axial-equatorial linkage) present one metastable (anti-psi) state, an intermediate configurational entropy, and two alternative intramolecular H-bonds; (iii) the four beta(1-->n)-linked disaccharides (n=1, 2, 3, or 4; equatorial-equatorial linkage) present two metastable (anti-phi and anti-psi) states, an intermediate configurational entropy, and one intramolecular H-bond; (iv) the two (1-->6)-linked disaccharides (additional glycosidic dihedral angle) present no (isomaltose) or a pair of (gentiobiose) metastable (anti-phi) states, the highest configurational entropy, and no intramolecular H-bonds. The observed conformational preferences appear to be dictated by four main driving forces (ring conformational preferences, exo-anomeric effect, steric constraints, and possible presence of a third glycosidic dihedral angle), leaving a secondary role to intramolecular H-bonding and specific solvation effects. In spite of the weak conformational driving force attributed to solvent-exposed H-bonds in water (highly polar protic solvent), intramolecular H-bonds may still have a significant influence on the physico-chemical properties of the disaccharide by decreasing its hydrophilicity. Along with previous work, the results also complete the suggestion of a spectrum of approximate transition timescales for carbohydrates up to the disaccharide level, namely: approximately 30 ps (hydroxyl groups), approximately 1 ns (free lactol group, free hydroxymethyl groups, glycosidic dihedral angleomega in (1-->6)-linked disaccharides), approximately 10 ns to 2 micros (ring conformation, glycosidic dihedral angles phi and psi). The calculated average values of the glycosidic torsional angles agree well with the available experimental data, providing validation for the force-field and simulation methodology employed.
报道了在 300K 和 1bar 下,11 种基于葡萄糖的二糖在水中的明溶剂分子动力学(MD)模拟。模拟使用 GROMOS 45A4 力场进行,通过局部提升伞状采样(LEUS)方法人为地增强了沿糖苷二面角 phi 和 psi 的采样。轨迹根据自由能图谱、稳定和亚稳态构象态(相对自由能和估计的转变时间尺度)、分子内氢键、单分子构象熵以及与实验数据的一致性进行分析。考虑到的所有二糖都表现出单个稳定(占主导地位)状态((1-->n)连接的二糖,其中 n=1、2、3 或 4)或两个稳定(可比地存在且在第三个糖苷二面角 omega 上不同;gg 或 gt)状态,具有较低的互变势垒((1-->6)连接的二糖)。也确定了具有 8-22 kJ mol(-1) 范围内相对自由能的亚稳态(反 phi 或反 psi)状态。这 11 种化合物可以分为四类:(i)α(1-->1)α 连接的二糖海藻糖(轴向-轴向键合)不存在亚稳态,具有最低的构象熵,并且没有分子内氢键;(ii)四种α(1-->n)连接的二糖(n=1、2、3 或 4;轴向-赤道键合)具有一个亚稳态(反 psi)状态,中等构象熵和两种替代的分子内氢键;(iii)四种β(1-->n)连接的二糖(n=1、2、3 或 4;赤道-赤道键合)具有两个亚稳态(反 phi 和反 psi)状态,中等构象熵和一个分子内氢键;(iv)两种(1-->6)连接的二糖(额外的糖苷二面角)不存在(异麦芽糖)或一对(龙胆二糖)亚稳态(反 phi)状态,具有最高的构象熵,并且没有分子内氢键。观察到的构象偏好似乎受四个主要驱动力(环构象偏好、端基异头效应、空间位阻和可能存在第三个糖苷二面角)支配,而分子内氢键和特定的溶剂化效应则起着次要作用。尽管归因于水中暴露的氢键的构象驱动力较弱(高极性质子溶剂),但分子内氢键仍可能通过降低二糖的亲水性对其理化性质产生重大影响。结合以前的工作,结果还完成了碳水化合物近似转变时间尺度谱的建议,直至二糖水平,即:约 30 ps(羟基),约 1 ns(游离内消旋基团、游离羟甲基基团、(1-->6)连接的二糖中的糖苷二面角 omega),约 10 ns 至 2 微秒(环构象、糖苷二面角 phi 和 psi)。糖苷扭转角的计算平均值与可用的实验数据吻合良好,为所采用的力场和模拟方法提供了验证。