Suppr超能文献

衣被小体蛋白的结构以及 COPI、COPII 和网格蛋白囊泡被膜之间的关系。

Structure of coatomer cage proteins and the relationship among COPI, COPII, and clathrin vesicle coats.

机构信息

Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.

出版信息

Cell. 2010 Jul 9;142(1):123-32. doi: 10.1016/j.cell.2010.05.030. Epub 2010 Jun 24.

Abstract

COPI-coated vesicles form at the Golgi apparatus from two cytosolic components, ARF G protein and coatomer, a heptameric complex that can polymerize into a cage to deform the membrane into a bud. Although coatomer shares a common evolutionary origin with COPII and clathrin vesicle coat proteins, the architectural relationship among the three cages is unclear. Strikingly, the alphabeta'-COP core of coatomer crystallizes as a triskelion in which three copies of a beta'-COP beta-propeller domain converge through their axial ends. We infer that the trimer constitutes the vertex of the COPI cage. Our model proposes that the COPI cage is intermediate in design between COPII and clathrin: COPI shares with clathrin an arrangement of three curved alpha-solenoid legs radiating from a common center, and COPI shares with COPII highly similar vertex interactions involving the axial ends of beta-propeller domains.

摘要

COP1 被膜小泡从高尔基体由两个胞质溶胶成分形成,ARF G 蛋白和衣被蛋白复合物,一种可以聚合形成笼状结构来使膜变形形成芽的七聚体复合物。虽然衣被蛋白复合物与 COPII 和网格蛋白囊泡包被蛋白具有共同的进化起源,但这三种笼状结构之间的架构关系尚不清楚。引人注目的是,衣被蛋白复合物的alphabeta'-COP 核心以三叶轮的形式结晶,其中三个 beta'-COP beta- 桨叶结构域的副本通过它们的轴向末端汇聚。我们推断三聚体构成了 COPI 被膜小泡的顶点。我们的模型提出,COP1 被膜小泡在设计上介于 COPII 和网格蛋白之间:COP1 与网格蛋白共享从共同中心辐射的三个弯曲的 alpha- 螺线管腿的排列,并且 COPI 与 COPII 共享涉及 beta- 桨叶结构域的轴向末端的高度相似的顶点相互作用。

相似文献

1
Structure of coatomer cage proteins and the relationship among COPI, COPII, and clathrin vesicle coats.
Cell. 2010 Jul 9;142(1):123-32. doi: 10.1016/j.cell.2010.05.030. Epub 2010 Jun 24.
2
The structures of COPI-coated vesicles reveal alternate coatomer conformations and interactions.
Science. 2012 Jun 15;336(6087):1451-4. doi: 10.1126/science.1221443. Epub 2012 May 24.
3
Crystal structure of alpha-COP in complex with epsilon-COP provides insight into the architecture of the COPI vesicular coat.
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11271-6. doi: 10.1073/pnas.1006297107. Epub 2010 Jun 3.
4
Structure and organization of coat proteins in the COPII cage.
Cell. 2007 Jun 29;129(7):1325-36. doi: 10.1016/j.cell.2007.05.036.
5
Structure and mechanism of COPI vesicle biogenesis.
Curr Opin Cell Biol. 2014 Aug;29:67-73. doi: 10.1016/j.ceb.2014.04.009. Epub 2014 May 17.
7
Size doesn't matter! The importance of size variability in coated vesicles.
Dev Cell. 2012 Jul 17;23(1):9-10. doi: 10.1016/j.devcel.2012.06.017.
9
Differential localization of coatomer complex isoforms within the Golgi apparatus.
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4425-30. doi: 10.1073/pnas.0611360104. Epub 2007 Mar 7.
10
Vesicle coats: structure, function, and general principles of assembly.
Trends Cell Biol. 2013 Jun;23(6):279-88. doi: 10.1016/j.tcb.2013.01.005. Epub 2013 Feb 13.

引用本文的文献

1
Structural glycobiology - from enzymes to organelles.
Biochem Soc Trans. 2025 Jan 31;53(1):83-100. doi: 10.1042/BST20241119.
2
GEMIN5 and neurodevelopmental diseases: from functional insights to disease perception.
Neural Regen Res. 2025 Jan 13;21(1):187-94. doi: 10.4103/NRR.NRR-D-24-01010.
3
The WDR11 complex is a receptor for acidic-cluster-containing cargo proteins.
Cell. 2024 Aug 8;187(16):4272-4288.e20. doi: 10.1016/j.cell.2024.06.024. Epub 2024 Jul 15.
5
Lymphocytic choriomeningitis arenavirus requires cellular COPI and AP-4 complexes for efficient virion production.
J Virol. 2024 Mar 19;98(3):e0200623. doi: 10.1128/jvi.02006-23. Epub 2024 Feb 9.
6
SEC13B Interacts with Suppressor of Frigida 4 to Repress Flowering.
Int J Mol Sci. 2023 Dec 8;24(24):17248. doi: 10.3390/ijms242417248.
7
A single C-terminal residue controls SARS-CoV-2 spike trafficking and incorporation into VLPs.
Nat Commun. 2023 Dec 15;14(1):8358. doi: 10.1038/s41467-023-44076-3.
8
Strategies for rapid production of crystallization quality coatomer WD40 domains.
Protein Expr Purif. 2023 Dec;212:106358. doi: 10.1016/j.pep.2023.106358. Epub 2023 Aug 23.
9
Human IFT-A complex structures provide molecular insights into ciliary transport.
Cell Res. 2023 Apr;33(4):288-298. doi: 10.1038/s41422-023-00778-3. Epub 2023 Feb 13.
10
An imaging-based RNA interference screen for modulators of the Rab6-mediated Golgi-to-ER pathway in mammalian cells.
Front Cell Dev Biol. 2022 Nov 29;10:1050190. doi: 10.3389/fcell.2022.1050190. eCollection 2022.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Molecular architecture of the Nup84-Nup145C-Sec13 edge element in the nuclear pore complex lattice.
Nat Struct Mol Biol. 2009 Nov;16(11):1173-7. doi: 10.1038/nsmb.1713. Epub 2009 Oct 25.
3
Structural basis of cargo membrane protein discrimination by the human COPII coat machinery.
EMBO J. 2008 Nov 5;27(21):2918-28. doi: 10.1038/emboj.2008.208. Epub 2008 Oct 9.
4
Structural basis for cargo regulation of COPII coat assembly.
Cell. 2008 Aug 8;134(3):474-84. doi: 10.1016/j.cell.2008.06.024.
5
Architecture of a coat for the nuclear pore membrane.
Cell. 2007 Dec 28;131(7):1313-26. doi: 10.1016/j.cell.2007.11.038.
7
Structure and organization of coat proteins in the COPII cage.
Cell. 2007 Jun 29;129(7):1325-36. doi: 10.1016/j.cell.2007.05.036.
8
Structural design of cage and coat scaffolds that direct membrane traffic.
Curr Opin Struct Biol. 2007 Apr;17(2):221-8. doi: 10.1016/j.sbi.2007.03.010. Epub 2007 Mar 28.
9
Structure of the Sec13/31 COPII coat cage.
Nature. 2006 Jan 12;439(7073):234-8. doi: 10.1038/nature04339.
10
Components of coated vesicles and nuclear pore complexes share a common molecular architecture.
PLoS Biol. 2004 Dec;2(12):e380. doi: 10.1371/journal.pbio.0020380. Epub 2004 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验