Suppr超能文献

二维指纹分析与比较:使用八种指纹方法深入了解数据库筛选性能。

Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods.

机构信息

Schrödinger GmbH, Dynamostr. 13, 68161 Mannheim, Germany.

出版信息

J Mol Graph Model. 2010 Sep;29(2):157-70. doi: 10.1016/j.jmgm.2010.05.008. Epub 2010 May 25.

Abstract

Virtual screening is a widely used strategy in modern drug discovery and 2D fingerprint similarity is an important tool that has been successfully applied to retrieve active compounds from large datasets. However, it is not always straightforward to select an appropriate fingerprint method and associated settings for a given problem. Here, we applied eight different fingerprint methods, as implemented in the new cheminformatics package Canvas, on a well-validated dataset covering five targets. The fingerprint methods include Linear, Dendritic, Radial, MACCS, MOLPRINT2D, Pairwise, Triplet, and Torsion. We find that most fingerprints have similar retrieval rates on average; however, each has special characteristics that distinguish its performance on different query molecules and ligand sets. For example, some fingerprints exhibit a significant ligand size dependency whereas others are more robust with respect to variations in the query or active compounds. In cases where little information is known about the active ligands, MOLPRINT2D fingerprints produce the highest average retrieval actives. When multiple queries are available, we find that a fingerprint averaged over all query molecules is generally superior to fingerprints derived from single queries. Finally, a complementarity metric is proposed to determine which fingerprint methods can be combined to improve screening results.

摘要

虚拟筛选是现代药物发现中广泛使用的策略,二维指纹相似性是一种重要的工具,已成功应用于从大型数据集检索活性化合物。然而,对于给定的问题,选择合适的指纹方法和相关设置并不总是那么简单。在这里,我们在一个经过充分验证的涵盖五个靶点的数据集上应用了八种不同的指纹方法,这些方法都实现于新的化学信息学软件包 Canvas 中。这些指纹方法包括线性、树状、放射状、MACCS、MOLPRINT2D、两两、三键和扭转。我们发现大多数指纹的平均检索率相似;然而,每个指纹都有其特殊的特征,区分其在不同查询分子和配体集上的性能。例如,一些指纹表现出显著的配体大小依赖性,而其他指纹在查询或活性化合物的变化方面则更加稳健。在对活性配体知之甚少的情况下,MOLPRINT2D 指纹产生的平均检索活性最高。当有多个查询可用时,我们发现,对所有查询分子进行平均的指纹通常优于来自单个查询的指纹。最后,提出了一种互补性度量标准来确定哪些指纹方法可以组合以提高筛选结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验