Wu Xiaoping, Akgün Can, Vaughan J Thomas, Andersen Peter, Strupp John, Uğurbil Kâmil, Moortele Pierre-François Van de
Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA.
J Magn Reson. 2010 May 5. doi: 10.1016/j.jmr.2010.04.018.
Parallel excitation holds strong promises to mitigate the impact of large transmit B(1) (B(1)(+)) distortion at very high magnetic field. Accelerated RF pulses, however, inherently tend to require larger values in RF peak power which may result in substantial increase in Specific Absorption Rate (SAR) in tissues, which is a constant concern for patient safety at very high field. In this study, we demonstrate adapted rate RF pulse design allowing for SAR reduction while preserving excitation target accuracy. Compared with other proposed implementations of adapted rate RF pulses, our approach is compatible with any k-space trajectories, does not require an analytical expression of the gradient waveform and can be used for large flip angle excitation. We demonstrate our method with numerical simulations based on electromagnetic modeling and we include an experimental verification of transmit pattern accuracy on an 8 transmit channel 9.4T system.
并行激发有望在非常高的磁场下减轻大的发射B(1)(B(1)(+))失真的影响。然而,加速射频脉冲本质上往往需要更大的射频峰值功率值,这可能导致组织中的比吸收率(SAR)大幅增加,这在非常高的磁场下一直是患者安全的一个持续关注点。在本研究中,我们展示了一种自适应速率射频脉冲设计,在保持激发目标精度的同时可降低SAR。与其他提出的自适应速率射频脉冲实现方式相比,我们的方法与任何k空间轨迹兼容,不需要梯度波形的解析表达式,并且可用于大翻转角激发。我们通过基于电磁建模的数值模拟来演示我们的方法,并且在一个8发射通道的9.4T系统上对发射模式精度进行了实验验证。