Suppr超能文献

并行激励中阵列元素之间互耦的预补偿。

Precompensation for mutual coupling between array elements in parallel excitation.

机构信息

Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States;

出版信息

Quant Imaging Med Surg. 2011 Dec;1(1):4-10. doi: 10.3978/j.issn.2223-4292.2011.11.02.

Abstract

Parallel transmission or excitation has been suggested to perform multi-dimensional spatial selective excitation to shorten the pulse width using a coil array and the sensitivity information. The mutual coupling between array elements has been a critical technical issue in RF array designs, which can cause artifacts on the excitation profile, leading to degraded excitation performance and image quality. In this work, a precompensation method is proposed to address the mutual coupling effect in parallel transmission by introducing the mutual coupling coefficient matrix into the RF pulses design procedure of the parallel transmission. 90° RF pulses have been designed using both the original transmit SENSE method and the proposed precompensation method for RF arrays with non-negligible mutual coupling, and their excitation profiles are generated by simulating the Bloch equation. The results show that the mutual coupling effect can be effectively compensated by using the proposed method, yielding enhanced tolerance to insufficient mutual decoupling of RF arrays in parallel excitation, ultimately, providing improved performance and accuracy of parallel excitation.

摘要

并行传输或激励被建议用于使用线圈阵列和灵敏度信息进行多维空间选择性激励,以缩短脉冲宽度。在 RF 阵列设计中,阵列元件之间的互耦是一个关键的技术问题,它会导致激励轮廓上的伪影,从而降低激励性能和图像质量。在这项工作中,提出了一种预补偿方法来解决并行传输中的互耦效应,通过将互耦系数矩阵引入到并行传输的 RF 脉冲设计过程中。对于具有不可忽略互耦的 RF 阵列,使用原始的传输 SENSE 方法和所提出的预补偿方法设计了 90°RF 脉冲,并通过模拟 Bloch 方程生成了它们的激励轮廓。结果表明,所提出的方法可以有效地补偿互耦效应,提高了对并行激励中 RF 阵列的不足互去耦的容忍度,最终提供了改进的并行激励性能和准确性。

相似文献

1
Precompensation for mutual coupling between array elements in parallel excitation.
Quant Imaging Med Surg. 2011 Dec;1(1):4-10. doi: 10.3978/j.issn.2223-4292.2011.11.02.
2
Array-compressed parallel transmit pulse design.
Magn Reson Med. 2016 Oct;76(4):1158-69. doi: 10.1002/mrm.26020. Epub 2015 Oct 28.
3
MRI RF array decoupling method with magnetic wall distributed filters.
IEEE Trans Med Imaging. 2015 Apr;34(4):825-35. doi: 10.1109/TMI.2014.2378695.
6
Sparse parallel transmission on randomly perturbed spiral k-space trajectory.
Quant Imaging Med Surg. 2014 Apr;4(2):106-11. doi: 10.3978/j.issn.2223-4292.2014.04.12.
7
General Coupling Matrix Synthesis for Decoupling MRI RF Arrays.
IEEE Trans Med Imaging. 2016 Oct;35(10):2229-2242. doi: 10.1109/TMI.2016.2553844. Epub 2016 Apr 13.
10
ICE decoupling technique for RF coil array designs.
Med Phys. 2011 Jul;38(7):4086-93. doi: 10.1118/1.3598112.

引用本文的文献

3
Sparse parallel transmission on randomly perturbed spiral k-space trajectory.
Quant Imaging Med Surg. 2014 Apr;4(2):106-11. doi: 10.3978/j.issn.2223-4292.2014.04.12.
4
Design and numerical evaluation of a volume coil array for parallel MR imaging at ultrahigh fields.
Quant Imaging Med Surg. 2014 Feb;4(1):50-6. doi: 10.3978/j.issn.2223-4292.2014.02.07.
5
Quadrature transmit array design using single-feed circularly polarized patch antenna for parallel transmission in MR imaging.
Quant Imaging Med Surg. 2014 Feb;4(1):11-8. doi: 10.3978/j.issn.2223-4292.2014.02.03.
6
Planar quadrature RF transceiver design using common-mode differential-mode (CMDM) transmission line method for 7T MR imaging.
PLoS One. 2013 Nov 12;8(11):e80428. doi: 10.1371/journal.pone.0080428. eCollection 2013.
7
Parallel Excitation in Ultrahigh Field Human MR Imaging and Multi-Channel Transmit System.
OMICS J Radiol. 2012 May;1(3):e110. doi: 10.4172/2167-79641000e110.
8
Image homogenization using pre-emphasis method for high field MRI.
Quant Imaging Med Surg. 2013 Aug;3(4):217-23. doi: 10.3978/j.issn.2223-4292.2013.07.01.
9
Hepatic fat assessment using advanced Magnetic Resonance Imaging.
Quant Imaging Med Surg. 2012 Sep;2(3):213-8. doi: 10.3978/j.issn.2223-4292.2012.08.05.
10
Multi-reception strategy with improved SNR for multichannel MR imaging.
PLoS One. 2012;7(8):e42237. doi: 10.1371/journal.pone.0042237. Epub 2012 Aug 3.

本文引用的文献

1
Introduction to: A k-space analysis of small-tip-angle excitation.
J Magn Reson. 2011 Dec;213(2):558-9. doi: 10.1016/j.jmr.2011.08.008. Epub 2011 Sep 3.
2
Multi-channel microstrip transceiver arrays using harmonics for high field MR imaging in humans.
IEEE Trans Med Imaging. 2012 Feb;31(2):183-91. doi: 10.1109/TMI.2011.2166273. Epub 2011 Aug 30.
3
ICE decoupling technique for RF coil array designs.
Med Phys. 2011 Jul;38(7):4086-93. doi: 10.1118/1.3598112.
4
Common-mode differential-mode (CMDM) method for double-nuclear MR signal excitation and reception at ultrahigh fields.
IEEE Trans Med Imaging. 2011 Nov;30(11):1965-73. doi: 10.1109/TMI.2011.2160192. Epub 2011 Jun 20.
5
Joint design of spoke trajectories and RF pulses for parallel excitation.
Magn Reson Med. 2011 Apr;65(4):973-85. doi: 10.1002/mrm.22676. Epub 2010 Nov 5.
6
Specific absorption rate reduction in parallel transmission by k-space adaptive radiofrequency pulse design.
Magn Reson Med. 2011 Feb;65(2):350-7. doi: 10.1002/mrm.22663. Epub 2010 Nov 16.
7
A radiofrequency coil configuration for imaging the human vertebral column at 7 T.
J Magn Reson. 2011 Feb;208(2):291-7. doi: 10.1016/j.jmr.2010.11.004. Epub 2010 Dec 4.
8
Transmit/receive radiofrequency coil with individually shielded elements.
Magn Reson Med. 2010 Dec;64(6):1640-51. doi: 10.1002/mrm.22574. Epub 2010 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验