Suppr超能文献

行走的果蝇(黑腹果蝇)对物体的偏好是由视觉和重力感知介导的。

Object preference by walking fruit flies, Drosophila melanogaster, is mediated by vision and graviperception.

作者信息

Robie Alice A, Straw Andrew D, Dickinson Michael H

机构信息

Department of Biology, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

J Exp Biol. 2010 Jul 15;213(Pt 14):2494-506. doi: 10.1242/jeb.041749.

Abstract

Walking fruit flies, Drosophila melanogaster, use visual information to orient towards salient objects in their environment, presumably as a search strategy for finding food, shelter or other resources. Less is known, however, about the role of vision or other sensory modalities such as mechanoreception in the evaluation of objects once they have been reached. To study the role of vision and mechanoreception in exploration behavior, we developed a large arena in which we could track individual fruit flies as they walked through either simple or more topologically complex landscapes. When exploring a simple, flat environment lacking three-dimensional objects, flies used visual cues from the distant background to stabilize their walking trajectories. When exploring an arena containing an array of cones, differing in geometry, flies actively oriented towards, climbed onto, and explored the objects, spending most of their time on the tallest, steepest object. A fly's behavioral response to the geometry of an object depended upon the intrinsic properties of each object and not a relative assessment to other nearby objects. Furthermore, the preference was not due to a greater attraction towards tall, steep objects, but rather a change in locomotor behavior once a fly reached and explored the surface. Specifically, flies are much more likely to stop walking for long periods when they are perched on tall, steep objects. Both the vision system and the antennal chordotonal organs (Johnston's organs) provide sufficient information about the geometry of an object to elicit the observed change in locomotor behavior. Only when both these sensory systems were impaired did flies not show the behavioral preference for the tall, steep objects.

摘要

行走的果蝇,即黑腹果蝇,利用视觉信息在其环境中朝向显著物体定向,大概这是一种寻找食物、庇护所或其他资源的搜索策略。然而,对于视觉或其他感觉模态(如机械感受)在果蝇接触到物体后的评估中所起的作用,我们了解得较少。为了研究视觉和机械感受在探索行为中的作用,我们构建了一个大型实验场,在其中可以追踪单个果蝇在简单或拓扑结构更复杂的景观中行走的情况。当果蝇在缺乏三维物体的简单平坦环境中探索时,它们利用远处背景的视觉线索来稳定行走轨迹。当在一个包含一系列几何形状不同的圆锥体的实验场中探索时,果蝇会主动朝向、爬上并探索这些物体,大部分时间都花在最高、最陡的物体上。果蝇对物体几何形状的行为反应取决于每个物体的固有属性,而不是与附近其他物体的相对评估。此外,这种偏好并非源于对高而陡的物体有更大的吸引力,而是果蝇一旦接触并探索物体表面,其运动行为就会发生变化。具体而言,当果蝇栖息在高而陡的物体上时,它们更有可能长时间停止行走。视觉系统和触角弦音器官(约翰斯顿氏器官)都能提供有关物体几何形状的足够信息,从而引发观察到的运动行为变化。只有当这两个感觉系统都受损时,果蝇才不会表现出对高而陡的物体的行为偏好。

相似文献

3
The relative roles of vision and chemosensation in mate recognition of Drosophila melanogaster.
J Exp Biol. 2014 Aug 1;217(Pt 15):2796-805. doi: 10.1242/jeb.105817. Epub 2014 Jun 4.
4
Virtual-reality techniques resolve the visual cues used by fruit flies to evaluate object distances.
Curr Biol. 2002 Sep 17;12(18):1591-4. doi: 10.1016/s0960-9822(02)01141-7.
6
Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1182-91. doi: 10.1073/pnas.1323529111. Epub 2014 Mar 17.
7
Turning behaviour depends on frictional damping in the fruit fly Drosophila.
J Exp Biol. 2007 Dec;210(Pt 24):4319-34. doi: 10.1242/jeb.010389.
8
Visual motion speed determines a behavioral switch from forward flight to expansion avoidance in Drosophila.
J Exp Biol. 2013 Feb 15;216(Pt 4):719-32. doi: 10.1242/jeb.074732. Epub 2012 Nov 29.
9
10
A novel lenticular arena to quantify locomotor competence in walking fruit flies.
J Exp Zool A Ecol Genet Physiol. 2012 Jul;317(6):382-94. doi: 10.1002/jez.1731. Epub 2012 May 17.

引用本文的文献

1
Contrast and luminance dependence of target choice and visual orientation in walking stick insects.
Sci Rep. 2025 Apr 10;15(1):12226. doi: 10.1038/s41598-025-90650-8.
2
Sexual dimorphism and the impact of aging on ball rolling-associated locomotor behavior in Drosophila.
Biol Open. 2024 Nov 15;13(11). doi: 10.1242/bio.060609. Epub 2024 Nov 13.
3
Visual processing in the fly, from photoreceptors to behavior.
Genetics. 2023 May 26;224(2). doi: 10.1093/genetics/iyad064.
4
Experimental identification of individual insect visual tracking delays in free flight and their effects on visual swarm patterns.
PLoS One. 2022 Nov 28;17(11):e0278167. doi: 10.1371/journal.pone.0278167. eCollection 2022.
5
A neurogenetic mechanism of experience-dependent suppression of aggression.
Sci Adv. 2022 Sep 9;8(36):eabg3203. doi: 10.1126/sciadv.abg3203. Epub 2022 Sep 7.
6
Three-Dimensional Tracking of Multiple Small Insects by a Single Camera.
J Insect Sci. 2021 Nov 1;21(6). doi: 10.1093/jisesa/ieab079.
7
Fast tuning of posture control by visual feedback underlies gaze stabilization in walking Drosophila.
Curr Biol. 2021 Oct 25;31(20):4596-4607.e5. doi: 10.1016/j.cub.2021.08.041. Epub 2021 Sep 8.
8
The Panopticon-Assessing the Effect of Starvation on Prolonged Fly Activity and Place Preference.
Front Behav Neurosci. 2021 Mar 25;15:640146. doi: 10.3389/fnbeh.2021.640146. eCollection 2021.
9
Multisensory control of navigation in the fruit fly.
Curr Opin Neurobiol. 2020 Oct;64:10-16. doi: 10.1016/j.conb.2019.11.017. Epub 2019 Dec 14.
10
Diverse Food-Sensing Neurons Trigger Idiothetic Local Search in Drosophila.
Curr Biol. 2019 May 20;29(10):1660-1668.e4. doi: 10.1016/j.cub.2019.03.004. Epub 2019 May 2.

本文引用的文献

1
TRPA channels distinguish gravity sensing from hearing in Johnston's organ.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13606-11. doi: 10.1073/pnas.0906377106. Epub 2009 Jul 28.
2
Motmot, an open-source toolkit for realtime video acquisition and analysis.
Source Code Biol Med. 2009 Jul 22;4:5. doi: 10.1186/1751-0473-4-5.
3
Flies require bilateral sensory input to track odor gradients in flight.
Curr Biol. 2009 Aug 11;19(15):1301-7. doi: 10.1016/j.cub.2009.06.022. Epub 2009 Jul 2.
4
High-throughput ethomics in large groups of Drosophila.
Nat Methods. 2009 Jun;6(6):451-7. doi: 10.1038/nmeth.1328. Epub 2009 May 3.
5
Peripheral visual circuits functionally segregate motion and phototaxis behaviors in the fly.
Curr Biol. 2009 Apr 14;19(7):613-9. doi: 10.1016/j.cub.2009.02.053. Epub 2009 Mar 19.
6
Distinct sensory representations of wind and near-field sound in the Drosophila brain.
Nature. 2009 Mar 12;458(7235):201-5. doi: 10.1038/nature07843.
7
The neural basis of Drosophila gravity-sensing and hearing.
Nature. 2009 Mar 12;458(7235):165-71. doi: 10.1038/nature07810.
8
Motion processing streams in Drosophila are behaviorally specialized.
Neuron. 2008 Jul 31;59(2):322-35. doi: 10.1016/j.neuron.2008.05.022.
9
Analysis of a spatial orientation memory in Drosophila.
Nature. 2008 Jun 26;453(7199):1244-7. doi: 10.1038/nature07003. Epub 2008 May 28.
10
Performance trade-offs in the flight initiation of Drosophila.
J Exp Biol. 2008 Feb;211(Pt 3):341-53. doi: 10.1242/jeb.012682.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验