Suppr超能文献

果蝇的转向行为取决于摩擦阻尼。

Turning behaviour depends on frictional damping in the fruit fly Drosophila.

作者信息

Hesselberg Thomas, Lehmann Fritz-Olaf

机构信息

Biofuture Research Group, Institute of Neurobiology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.

出版信息

J Exp Biol. 2007 Dec;210(Pt 24):4319-34. doi: 10.1242/jeb.010389.

Abstract

Turning behaviour in the fruit fly Drosophila depends on several factors including not only feedback from sensory organs and muscular control of wing motion, but also the mass moments of inertia and the frictional damping coefficient of the rotating body. In the present study we evaluate the significance of body friction for yaw turning and thus the limits of visually mediated flight control in Drosophila, by scoring tethered flies flying in a flight simulator on their ability to visually compensate a bias on a moving object and a visual background panorama at different simulated frictional dampings. We estimated the fly's natural damping coefficient from a numerical aerodynamic model based on both friction on the body and the flapping wings during saccadic turning. The model predicts a coefficient of 54 x 10(-12) Nm s, which is more than 100-times larger than the value estimated from a previous study on the body alone. Our estimate suggests that friction plays a larger role for yaw turning in Drosophila than moments of inertia. The simulator experiments showed that visual performance of the fruit fly collapses near the physical conditions estimated for freely flying animals, which is consistent with the suggested role of the halteres for flight stabilization. However, kinematic analyses indicate that the measured loss of flight control might be due predominantly to the limited fine control in the fly's steering muscles below a threshold of 1-2 degrees stroke amplitude, rather than resulting from the limits of visual motion detection by the fly's compound eyes. We discuss the impact of these results and suggest that the elevated frictional coefficient permits freely flying fruit flies to passively terminate rotational body movements without producing counter-torque during the second half of the saccadic turning manoeuvre.

摘要

果蝇的转向行为取决于多种因素,不仅包括来自感觉器官的反馈和翅膀运动的肌肉控制,还包括旋转体的质量惯性矩和摩擦阻尼系数。在本研究中,我们通过对在飞行模拟器中飞行的系留果蝇在不同模拟摩擦阻尼下视觉补偿移动物体和视觉背景全景偏差的能力进行评分,来评估身体摩擦对偏航转向的重要性,从而评估果蝇视觉介导飞行控制的极限。我们根据一个数值空气动力学模型估算果蝇的自然阻尼系数,该模型基于扫视转向过程中身体和扑动翅膀上的摩擦力。该模型预测的系数为54×10⁻¹² Nm·s,比之前仅对身体进行研究估算的值大100多倍。我们的估算表明,摩擦在果蝇偏航转向中所起的作用比惯性矩更大。模拟器实验表明,果蝇的视觉表现会在接近自由飞行动物估算的物理条件时崩溃,这与平衡棒对飞行稳定所起的作用一致。然而,运动学分析表明,测得的飞行控制丧失可能主要是由于果蝇转向肌肉在低于1 - 2度冲程幅度阈值时的精细控制有限,而非果蝇复眼视觉运动检测的极限所致。我们讨论了这些结果的影响,并表明升高的摩擦系数使自由飞行的果蝇能够在扫视转向动作的后半段被动终止旋转身体运动,而无需产生反向扭矩。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验