Suppr超能文献

膝关节松弛及其周期性变化会影响体重承受期间的胫股运动。

Knee joint laxity and its cyclic variation influence tibiofemoral motion during weight acceptance.

机构信息

1School of Health and Human Performance, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.

出版信息

Med Sci Sports Exerc. 2011 Feb;43(2):287-95. doi: 10.1249/MSS.0b013e3181ed118d.

Abstract

PURPOSE

to better understand how sex differences in anterior knee laxity (AKL) affect knee joint biomechanics, we examined the consequence of greater absolute baseline (males and females) and cyclic increases in AKL during the menstrual cycle (females) on anterior tibial translation (ATT) as the knee transitioned from non-weight-bearing to weight-bearing conditions, while also controlling for genu recurvatum (GR).

METHODS

males and females (71 females and 48 males, aged 18-30 yr) were measured for AKL and GR and underwent measurement of ATT. Women were tested on the days of their cycle when AKL was at its minimum (T1) and maximum (T2); males were matched in time to a female with similar AKL. Linear regressions examined relationships between absolute baseline (AKLT1, GRT1) and cyclic changes (Δ = T2 - T1; AKLΔ, GRΔ) (females only) in knee laxity with ATT as measured at T1 and T2 and Δ (T2 - T1) (females only).

RESULTS

AKL and GR increased in females, but not in males, from T1 to T2. Greater AKLT1 and GRT1 predicted greater ATTT1 and ATTT2 in males (R = 21.0, P < 0.007). The combination of greater AKLT1, AKLΔ, and less GRΔ predicted greater ATTT1 and ATTT2 in females (R = 12.5-13.1, P < 0.05), with AKLΔ being a stronger predictor (coefficient, P value) of ATTT2 (0.864, P = 0.027) compared with ATTT1 (0.333, P = 0.370). AKLΔ was the sole predictor of ATTΔ (R = 0.104 and 0.740, P = 0.042).

CONCLUSIONS

greater absolute baseline and cyclic increases in AKL were consistently associated with greater ATT produced by transition of the knee from non-weight-bearing to weight-bearing. Because the anterior cruciate ligament is the primary restraint to ATT, these findings provide insight into the possible mechanisms by which greater AKL may be associated with at-risk knee biomechanics during the weight acceptance phase of dynamic tasks.

摘要

目的

为了更好地了解膝关节前侧松弛度(AKL)的性别差异如何影响膝关节生物力学,我们研究了在月经周期中(女性)绝对基线(男性和女性)和 AKL 循环增加的后果,当膝关节从非负重状态过渡到负重状态时,对胫骨前侧平移(ATT)的影响,同时还控制了膝内翻(GR)。

方法

男性和女性(71 名女性和 48 名男性,年龄 18-30 岁)测量 AKL 和 GR,并进行 ATT 测量。女性在 AKL 最小(T1)和最大(T2)时进行测试;男性与具有相似 AKL 的女性在时间上相匹配。线性回归分析了绝对基线(AKLT1、GRT1)和膝关节松弛度的循环变化(Δ= T2-T1;AKLΔ、GRΔ)(仅女性)与 T1 和 T2 时测量的 ATT 以及 Δ(T2-T1)(仅女性)之间的关系。

结果

AKL 和 GR 在女性中从 T1 到 T2 增加,但在男性中没有增加。AKLT1 和 GRT1 越大,男性的 ATTT1 和 ATTT2 越大(R=21.0,P<0.007)。AKLT1、AKLΔ 较大和 GRΔ 较小的组合可预测女性的 ATTT1 和 ATTT2 更大(R=12.5-13.1,P<0.05),AKLΔ 是预测 ATTT2(0.864,P=0.027)的更强预测因子(系数,P 值),而不是 ATTT1(0.333,P=0.370)。AKLΔ 是 ATTΔ 的唯一预测因子(R=0.104 和 0.740,P=0.042)。

结论

绝对基线和 AKL 的循环增加与膝关节从非负重状态过渡到负重状态时产生的更大 ATT 始终相关。由于前交叉韧带是 ATT 的主要限制因素,这些发现为了解更大的 AKL 如何在动态任务的负重接受阶段与处于风险中的膝关节生物力学相关提供了线索。

相似文献

1
Knee joint laxity and its cyclic variation influence tibiofemoral motion during weight acceptance.
Med Sci Sports Exerc. 2011 Feb;43(2):287-95. doi: 10.1249/MSS.0b013e3181ed118d.
2
Cyclic variations in multiplanar knee laxity influence landing biomechanics.
Med Sci Sports Exerc. 2012 May;44(5):900-9. doi: 10.1249/MSS.0b013e31823bfb25.
4
Variations in varus/valgus and internal/external rotational knee laxity and stiffness across the menstrual cycle.
J Orthop Res. 2011 Mar;29(3):318-25. doi: 10.1002/jor.21243. Epub 2010 Sep 29.
6
Joint laxity is related to lower extremity energetics during a drop jump landing.
Med Sci Sports Exerc. 2010 Apr;42(4):771-80. doi: 10.1249/MSS.0b013e3181bbeaa6.
7
Anterior knee stiffness changes in laxity "responders" versus "nonresponders" across the menstrual cycle.
J Athl Train. 2013 Jan-Feb;48(1):39-46. doi: 10.4085/1062-6050-47.6.07.
8
Identifying multiplanar knee laxity profiles and associated physical characteristics.
J Athl Train. 2012 Mar-Apr;47(2):159-69. doi: 10.4085/1062-6050-47.2.159.
9
Relationship of anterior knee laxity to knee translations during drop landings: a bi-plane fluoroscopy study.
Knee Surg Sports Traumatol Arthrosc. 2011 Apr;19(4):653-62. doi: 10.1007/s00167-010-1327-6. Epub 2010 Dec 11.
10
Knee Laxity in the Menstrual Cycle after Anterior Cruciate Ligament Reconstruction: A Case Series.
Int J Environ Res Public Health. 2023 Jan 27;20(3):2277. doi: 10.3390/ijerph20032277.

引用本文的文献

2
Effects of the menstrual cycle on lower-limb biomechanics, neuromuscular control, and anterior cruciate ligament injury risk: a systematic review.
Muscles Ligaments Tendons J. 2017 May 10;7(1):136-146. doi: 10.11138/mltj/2017.7.1.136. eCollection 2017 Jan-Mar.
3
Multiplanar Knee Laxity and Perceived Function During Activities of Daily Living and Sport.
J Athl Train. 2015 Nov;50(11):1199-206. doi: 10.4085/1062-6050-50.11.10. Epub 2015 Nov 5.
4
ACL Research Retreat VII: An Update on Anterior Cruciate Ligament Injury Risk Factor Identification, Screening, and Prevention.
J Athl Train. 2015 Oct;50(10):1076-93. doi: 10.4085/1062-6050-50.10.06. Epub 2015 Sep 4.
5
Changes in fatigue, multiplanar knee laxity, and landing biomechanics during intermittent exercise.
J Athl Train. 2015 May;50(5):486-97. doi: 10.4085/1062-6050-49.5.08. Epub 2015 Feb 12.
6
Accuracy of calendar-based methods for assigning menstrual cycle phase in women.
Sports Health. 2013 Mar;5(2):143-9. doi: 10.1177/1941738112469930.
7
Anterior tibiofemoral intersegmental forces during landing are predicted by passive restraint measures in women.
Knee. 2013 Dec;20(6):493-9. doi: 10.1016/j.knee.2013.04.017. Epub 2013 Jun 12.
8
Anterior knee stiffness changes in laxity "responders" versus "nonresponders" across the menstrual cycle.
J Athl Train. 2013 Jan-Feb;48(1):39-46. doi: 10.4085/1062-6050-47.6.07.
9
ACL Research Retreat VI: an update on ACL injury risk and prevention.
J Athl Train. 2012 Sep-Oct;47(5):591-603. doi: 10.4085/1062-6050-47.5.13.

本文引用的文献

1
The Relationship Between Lower Extremity Alignment Characteristics and Anterior Knee Joint Laxity.
Sports Health. 2009 Jan;1(1):54-60. doi: 10.1177/1941738108326702.
3
The role of the oblique popliteal ligament and other structures in preventing knee hyperextension.
Am J Sports Med. 2010 Mar;38(3):550-7. doi: 10.1177/0363546509348742. Epub 2010 Jan 23.
4
Effect of axial load on anterior tibial translation when transitioning from non-weight bearing to weight bearing.
Clin Biomech (Bristol). 2010 Jan;25(1):77-82. doi: 10.1016/j.clinbiomech.2009.09.004.
5
The relationship between posterior tibial slope and anterior cruciate ligament injuries.
Am J Sports Med. 2010 Jan;38(1):63-7. doi: 10.1177/0363546509343198. Epub 2009 Sep 8.
6
Effects of transverse and frontal plane knee laxity on hip and knee neuromechanics during drop landings.
Am J Sports Med. 2009 Sep;37(9):1821-30. doi: 10.1177/0363546509334225. Epub 2009 May 29.
7
Thigh strength and activation as predictors of knee biomechanics during a drop jump task.
Med Sci Sports Exerc. 2009 Apr;41(4):857-66. doi: 10.1249/MSS.0b013e3181e3b3f.
9
Obesity and menstrual irregularity: associations with SHBG, testosterone, and insulin.
Obesity (Silver Spring). 2009 May;17(5):1070-6. doi: 10.1038/oby.2008.641. Epub 2009 Jan 29.
10
The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint.
J Bone Joint Surg Am. 2008 Dec;90(12):2724-34. doi: 10.2106/JBJS.G.01358.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验