Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
Dalton Trans. 2010 Aug 21;39(31):7266-75. doi: 10.1039/b925129d. Epub 2010 Jun 25.
A ditopic 1,2-bis(2,2'-bipyridyl-6-yl)ethyne ligand, L, has been synthesized for the first time by consecutive Suzuki and Sonogashira coupling reactions either in a one- or two-step synthesis. Coordination of L with some first-row transition metals, Fe, Mn and Co showed a very rich structural diversity that can be obtained with this ligand. Reaction of L with Mn(II)(OAc)(2) yielded a dimanganese(II) complex, [Mn(2)L(mu-OAc)(3)]PF(6), (1) where the two somewhat inequivalent trigonal-bipyramidal Mn atoms separated by 3.381 A are bridged by L and three acetate moieties. A similar reaction of L with Mn(III)(OAc)(3) yielded a very different dimanganese complex [Mn(2)L'(OH)(OAc)(2)(DMF)(2)]PF(6) x DMF (2) where L' is a E-1,2-bis(2,2'-bipyridyl-6-yl)ethene fragment that was formed in situ. The L' ligand bridges between the two Mn centers, despite its trans configuration, which leads to a very strained ethene bridging moiety. The Mn atoms are also bridged by two acetate ligands and a hydroxy group that bridges between the Mn atoms and the ethene fragment; DMF completes the octahedral coordination around each Mn atom which are separated by 3.351 A. A comproportionation reaction of L with Mn(II)(OAc)(2) and n-Bu(4)NMnO(4) yielded a tetramanganese compound, Mn(4)(mu(3)-O)(2)(OAc)(4)(H(2)O)(2)L(2)(2) x 2 CH(3)CN (3). Compound 3 has a dimer of dimers structure of the tetranuclear Mn core that consists of binuclear Mn(2)O(OAc)(2)L fragment and a PF(6) anion. BVS calculations indicate that 3 is a mixed-valent 2Mn(II) plus 2Mn(III) compound where two Mn(II)(2)O(OAc)(2)L fragments are held together by Mn(III)-O inter-fragment linkers which have a distorted octahedral geometry. The Mn atoms in the Mn(2)O(OAc)(2)L fragments have a capped square-pyramid configuration where an aqua ligand is capped on one of the faces. Although the aqua ligand is well within a bonding distance to a carbon atom of the proximal ethyne bridge, there does not appear to be an oxygen-carbon bond formation, rather the ligand is constrained in this position, as deduced by the observation that the bond lengths and angles of the ligand are essentially the same as those for the free ligand, L. Reaction of L with perchlorate or triflate salts of Fe(II), Mn(II) and Co(II) in dry acetonitrile yielded binuclear triple helicate structures (2:3 metal to L ratios) Fe(2)L(3)(4) x CH(3)CN (4), Mn(2)L(3)(4) x 1.7 CH(3)CN x 1.65 EtOEt (5) and Co(2)L(3)(4) x 2 CH(3)CN x 2 EtOEt (6) where each M(II) center with a slightly distorted octahedral geometry is bridged by three of the ditopic ligands. The M-M distances varied; 5.961 A (Mn), 6.233 A (Co) 6.331 A (Fe). Reaction of L with Co(ClO(4))(2) x 6 H(2)O in wet acetonitrile yielded a dicobalto(III) compound, Co(2)L'(3)(O)(2)(2) x H(2)O (7), with two types of L' fragments; one bridging between the two Co centers and two non-bridging ligands, each bonded to a Co atom via one bipyridyl group where the other is non-bonding. The octahedral coordination sphere around each Co atom is completed by the formation of a cobalt-carbon bond from the two carbon atoms of the ethene moiety of the bridging ligand and by a hydroxy moiety that is also bonded to the ethene group of the non-bridging ligand. Reaction of L with Co(ClO(4))(2) x 6 H(2)O in dry acetonitrile in the presence of Et(3)N yielded the tetracobalto(II) complex {Co(2)L(4)(OH)(4)(4)}(2) (8) with a unique twisted square configuration of cobalt ions with Co-Co distances of 3.938 to 4.131 A. In addition to the L bridging ligand the Co atoms are linked by hydroxy moieties. Some preliminary catalytic studies showed that the Mn compounds 1 and 2 were active (high yield within 3 min) for alkene epoxidation with peracetic acid and hydrogen peroxide dismutation (catalase activity).
一种双齿 1,2-双(2,2'-联吡啶-6-基)乙炔配体 L 通过连续的 Suzuki 和 Sonogashira 偶联反应首次合成,可在一步或两步合成中得到。L 与一些第一过渡金属铁、锰和钴配位,表现出非常丰富的结构多样性,这种配体可以得到这种结构多样性。L 与 Mn(II)(OAc)(2)反应生成二锰(II)配合物[Mn(2)L(mu-OAc)(3)]PF(6)(1),其中两个略有不等价的三角双锥 Mn 原子通过 L 和三个乙酸根基团桥接,间距为 3.381Å。类似地,L 与 Mn(III)(OAc)(3)反应生成一种非常不同的二锰配合物[Mn(2)L'(OH)(OAc)(2)(DMF)(2)]PF(6)xDMF(2),其中 L'是原位形成的 E-1,2-双(2,2'-联吡啶-6-基)乙烯片段。尽管 L'配体的构型为反式,但它桥接在两个 Mn 中心之间,导致乙烯桥接部分非常紧张。Mn 原子也通过两个乙酸根和一个桥接 Mn 原子和乙烯片段的羟基基团桥接;DMF 完成每个 Mn 原子的八面体配位,它们之间的距离为 3.351Å。L 与 Mn(II)(OAc)(2)和 n-Bu(4)NMnO(4)的歧化反应生成四锰化合物Mn(4)(mu(3)-O)(2)(OAc)(4)(H(2)O)(2)L(2)(2)x2CH(3)CN(3)。化合物 3 具有四核 Mn 核的二聚体-二聚体结构,由双核Mn(2)O(OAc)(2)L片段和一个 PF(6)阴离子组成。BVS 计算表明,3 是一个混合价 2Mn(II)加 2Mn(III)化合物,其中两个Mn(II)(2)O(OAc)(2)L片段由 Mn(III)-O 桥接片段连接,桥接片段具有扭曲的八面体几何形状。Mn(2)O(OAc)(2)L片段中的 Mn 原子具有被一个水分子封端的帽四方锥构型。尽管水分子很好地处于与邻近的乙炔桥的一个碳原子的成键距离内,但似乎没有氧-碳键形成,而是配体被约束在这个位置,这可以从观察到的配体的键长和角度与游离配体基本相同来推断。L 与 Fe(II)、Mn(II)和 Co(II)的高氯酸盐或三氟甲磺酸盐在干燥的乙腈中反应生成双核三联螺旋体结构(2:3 金属与 L 的比例)Fe(2)L(3)(4)xCH(3)CN(4),Mn(2)L(3)(4)x1.7CH(3)CNx1.65EtOEt(5)和Co(2)L(3)(4)x2CH(3)CNx2EtOEt(6),其中每个略微扭曲的八面体几何形状的 M(II)中心由三个双齿配体桥接。M-M 距离不同;5.961Å(Mn)、6.233Å(Co)、6.331Å(Fe)。L 与 Co(ClO(4))(2)x6H(2)O 在湿乙腈中的反应生成二钴(III)化合物Co(2)L'(3)(O)(2)(2)xH(2)O(7),其中有两种类型的 L'片段;一种桥接在两个 Co 中心之间,两种非桥接配体,每个配体通过一个联吡啶基团与一个 Co 原子键合,另一个配体是无键的。每个 Co 原子的八面体配位球通过形成一个钴-碳键来完成,该键由桥接配体的乙烯部分的两个碳原子和非桥接配体的一个碳原子形成,该碳原子与另一个碳原子形成非键合。L 与 Co(ClO(4))(2)x6H(2)O 在干燥的乙腈中与 Et(3)N 反应生成具有独特扭曲的正方形构型的四钴(II)配合物{Co(2)L(4)(OH)(4)(4)}(2)(8),其中 Co 离子具有 3.938 至 4.131Å 的 Co-Co 距离。除了 L 桥接配体外,Co 原子还通过羟基基团连接。一些初步的催化研究表明,Mn 化合物 1 和 2 对过乙酸和过氧化氢歧化(过氧化氢酶活性)的烯烃环氧化具有很高的活性(3 分钟内高收率)。