Suppr超能文献

协同进化算法的理论收敛保证。

Theoretical convergence guarantees for cooperative coevolutionary algorithms.

机构信息

Google Inc, Santa Monica, California 90405, USA.

出版信息

Evol Comput. 2010 Winter;18(4):581-615. doi: 10.1162/EVCO_a_00004. Epub 2010 Jun 28.

Abstract

Cooperative coevolutionary algorithms have the potential to significantly speed up the search process by dividing the space into parts that can each be conquered separately. However, recent research presented theoretical and empirical arguments that these algorithms tend to converge to suboptimal solutions in the search space, and are thus not fit for optimization tasks. This paper details an extended formal model for cooperative coevolutionary algorithms, and uses it to explore possible reasons these algorithms converge to optimal or suboptimal solutions. We demonstrate that, under specific conditions, this theoretical model will converge to the globally optimal solution. The proofs provide the underlying theoretical foundation for a better application of cooperative coevolutionary algorithms. We demonstrate the practical advantages of applying ideas from this theoretical work to a simple problem domain.

摘要

协同进化算法通过将搜索空间划分为可以分别攻克的部分,有潜力显著加快搜索过程。然而,最近的研究提出了理论和实证论据,表明这些算法往往会在搜索空间中收敛到次优解,因此不适合优化任务。本文详细介绍了一个扩展的协同进化算法形式模型,并使用它来探索这些算法为什么会收敛到最优或次优解。我们证明了,在特定条件下,这个理论模型将收敛到全局最优解。这些证明为更好地应用协同进化算法提供了理论基础。我们展示了将这一理论工作的思想应用于简单问题领域的实际优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验