School of Computer Science, The University of Nottingham, United Kingdom.
Evol Comput. 2011 Fall;19(3):405-28. doi: 10.1162/EVCO_a_00033. Epub 2011 May 23.
Squeaky wheel optimization (SWO) is a relatively new metaheuristic that has been shown to be effective for many real-world problems. At each iteration SWO does a complete construction of a solution starting from the empty assignment. Although the construction uses information from previous iterations, the complete rebuilding does mean that SWO is generally effective at diversification but can suffer from a relatively weak intensification. Evolutionary SWO (ESWO) is a recent extension to SWO that is designed to improve the intensification by keeping the good components of solutions and only using SWO to reconstruct other poorer components of the solution. In such algorithms a standard challenge is to understand how the various parameters affect the search process. In order to support the future study of such issues, we propose a formal framework for the analysis of ESWO. The framework is based on Markov chains, and the main novelty arises because ESWO moves through the space of partial assignments. This makes it significantly different from the analyses used in local search (such as simulated annealing) which only move through complete assignments. Generally, the exact details of ESWO will depend on various heuristics; so we focus our approach on a case of ESWO that we call ESWO-II and that has probabilistic as opposed to heuristic selection and construction operators. For ESWO-II, we study a simple problem instance and explicitly compute the stationary distribution probability over the states of the search space. We find interesting properties of the distribution. In particular, we find that the probabilities of states generally, but not always, increase with their fitness. This nonmonotonocity is quite different from the monotonicity expected in algorithms such as simulated annealing.
吱吱作响的轮子优化 (SWO) 是一种相对较新的元启发式方法,已被证明对许多实际问题有效。在每次迭代中,SWO 都从空分配开始完整地构建解决方案。虽然构建使用了来自前几次迭代的信息,但完整的重建意味着 SWO 通常在多样化方面很有效,但可能会受到相对较弱的强化的影响。进化 SWO (ESWO) 是 SWO 的一个最近扩展,旨在通过保留解决方案的良好组件并仅使用 SWO 来重建解决方案的其他较差组件来提高强化效果。在这种算法中,一个标准的挑战是了解各种参数如何影响搜索过程。为了支持对这些问题的未来研究,我们提出了一种用于分析 ESWO 的正式框架。该框架基于马尔可夫链,主要的新颖之处在于 ESWO 通过部分分配的空间移动。这使其与仅通过完整分配移动的局部搜索(如模拟退火)的分析有很大的不同。通常,ESWO 的具体细节将取决于各种启发式方法;因此,我们专注于我们称之为 ESWO-II 的 ESWO 案例,它具有概率而不是启发式选择和构造算子。对于 ESWO-II,我们研究了一个简单的问题实例,并明确计算了搜索空间状态的平稳分布概率。我们发现了分布的有趣性质。特别是,我们发现状态的概率通常但不总是随着它们的适应度而增加。这种非单调与模拟退火等算法中预期的单调完全不同。