Suppr超能文献

Basolateral ionic permeabilities of macula densa cells.

作者信息

Lapointe J Y, Bell P D, Hurst A M, Cardinal J

机构信息

Membrane Transport Research Group, University of Montreal, Quebec, Canada.

出版信息

Am J Physiol. 1991 Jun;260(6 Pt 2):F856-60. doi: 10.1152/ajprenal.1991.260.6.F856.

Abstract

It has recently been shown that membrane ionic transport pathways of macula densa cells can be measured using conventional microelectrodes. To determine if conductances could be identified at the basolateral membrane of macula densa cells, cortical thick ascending limbs (CTAL) with attached glomeruli were continuously perfused with a 25 mM NaCl bicarbonate-free Ringer solution. Individual basolateral Na+, Cl-, NaCl, and K+ concentrations were altered by isosmotic replacement with N-methyl-D-glucamine and/or cyclamate. Reduction in basolateral [Na+] from 150 to 25 mM hyperpolarized basolateral membrane potential (Vbl) by 9.9 +/- 1.3 mV (n = 10; all data are corrected for changes in liquid junction potential at bath electrode). A decrease in bath [Cl-] from 150 to 25 mM depolarized Vbl by 20 +/- 2.4 mV (n = 13), whereas decreases in bath [NaCl] from 150 to 25 mM depolarized Vbl by 29 +/- 6.8 mV (n = 5). In the presence of 150 mM NaCl bathing solution, a stepwise increase in [K+] from 5 to 15 mM (by replacement of 10 mM NaCl with 10 mM KCl) depolarized Vbl by 3.3 +/- 1.1 mV (n = 8). After correction for individual transepithelial diffusion potentials, Cl conductance averaged 59 +/- 19% of the total basolateral conductance, whereas K+ (23 +/- 8%) and Na+ (17 +/- 10%) contributed significantly less to the overall basolateral conductance. These results indicate that membrane potential of macula densa cells may be very sensitive to alterations in intracellular Cl- activity and suggest that apical transport of NaCl through a furosemide-sensitive Na(+)-K(+)-2Cl- transporter may affect membrane potential in macula densa cells via a change in intracellular Cl- activity.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验